論文の概要: Trading Devil: Robust backdoor attack via Stochastic investment models and Bayesian approach
- arxiv url: http://arxiv.org/abs/2406.10719v3
- Date: Fri, 21 Jun 2024 17:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 11:16:10.731443
- Title: Trading Devil: Robust backdoor attack via Stochastic investment models and Bayesian approach
- Title(参考訳): トレーディング・デビル:確率的投資モデルとベイズ的アプローチによるロバストなバックドア攻撃
- Authors: Orson Mengara,
- Abstract要約: 本研究は、投資ベースのバックドアアタック(MarketBack)として知られる特定のタイプの攻撃について検討する。
MarketBackは、敵が音声のスタイリスティックな特性を、ばかげた音声認識システムに戦略的に操作するシステムである。
機械学習モデルのセキュリティと整合性は、バックドア攻撃によって深刻に脅かされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the growing use of voice-activated systems and speech recognition technologies, the danger of backdoor attacks on audio data has grown significantly. This research looks at a specific type of attack, known as a Stochastic investment-based backdoor attack (MarketBack), in which adversaries strategically manipulate the stylistic properties of audio to fool speech recognition systems. The security and integrity of machine learning models are seriously threatened by backdoor attacks, in order to maintain the reliability of audio applications and systems, the identification of such attacks becomes crucial in the context of audio data. Experimental results demonstrated that MarketBack is feasible to achieve an average attack success rate close to 100% in seven victim models when poisoning less than 1% of the training data.
- Abstract(参考訳): 音声アクティベーションシステムや音声認識技術の利用の増加に伴い、音声データに対するバックドア攻撃の危険性は大幅に増大している。
本研究では、確率的投資に基づくバックドア攻撃(MarketBack)と呼ばれる特定の種類の攻撃について検討する。
マシンラーニングモデルのセキュリティと整合性は、オーディオアプリケーションやシステムの信頼性を維持するために、バックドア攻撃によって深刻な脅威を受けています。
実験結果から,MarketBackは,トレーニングデータの1%未満を中毒した場合の7つのモデルにおいて,平均攻撃成功率を100%近く達成できることが示された。
関連論文リスト
- Revisiting Backdoor Attacks against Large Vision-Language Models [76.42014292255944]
本稿では,LVLMの命令チューニングにおけるバックドア攻撃の一般化可能性について実験的に検討する。
以上に基づいて,既存のバックドア攻撃を修正した。
本稿では,従来のシンプルなバックドア戦略でさえ,LVLMに深刻な脅威をもたらすことを指摘する。
論文 参考訳(メタデータ) (2024-06-27T02:31:03Z) - Acoustic Cybersecurity: Exploiting Voice-Activated Systems [0.0]
私たちの研究は、AmazonのAlexa、Android、iOS、Cortanaなど、さまざまなプラットフォームにおけるこれらの攻撃の可能性を広げています。
攻撃の成功率はおよそ60%で、遠隔で100フィート以上離れた場所からデバイスを起動できる。
これらの攻撃は重要なインフラを脅かし、多面的な防御戦略の必要性を強調した。
論文 参考訳(メタデータ) (2023-11-23T02:26:11Z) - Breaking Speaker Recognition with PaddingBack [18.219474338850787]
近年の研究では、音声バックドアは画像バックドアと同様に、変換をトリガーとして利用できることが示されている。
パディングバック(PaddingBack)は悪質な操作を利用して有毒なサンプルを生成する無音バックドアアタックである。
論文 参考訳(メタデータ) (2023-08-08T10:36:44Z) - Fake the Real: Backdoor Attack on Deep Speech Classification via Voice
Conversion [14.264424889358208]
本研究は,音声変換に基づくサンプル特異的トリガを用いたバックドアアタックを探索する。
具体的には、事前に訓練された音声変換モデルを用いてトリガーを生成する。
論文 参考訳(メタデータ) (2023-06-28T02:19:31Z) - Robust Contrastive Language-Image Pre-training against Data Poisoning
and Backdoor Attacks [52.26631767748843]
ROCLIPは、ターゲットデータ中毒やバックドア攻撃に対して、マルチモーダル視覚言語モデルを堅牢に学習するための最初の効果的な方法である。
ROCLIPは、比較的大きく多様なランダムキャプションのプールを考慮することにより、有毒な撮像対の関連を効果的に破壊する。
実験の結果,ROCLIPは訓練前のCLIPモデルにおいて,最先端のデータ中毒やバックドア攻撃を未然に防ぐことができることがわかった。
論文 参考訳(メタデータ) (2023-03-13T04:49:46Z) - VSVC: Backdoor attack against Keyword Spotting based on Voiceprint
Selection and Voice Conversion [6.495134473374733]
ディープニューラルネットワーク(DNN)に基づくキーワードスポッティング(KWS)は、音声制御シナリオにおいて大きな成功を収めている。
本稿では,Voiceprint Selection and Voice Conversion(VSVC)に基づくバックドア攻撃方式を提案する。
VSVCは、トレーニングデータの1%未満を汚染している4つの犠牲者モデルにおいて、平均的な攻撃成功率を97%近く達成することが可能である。
論文 参考訳(メタデータ) (2022-12-20T09:24:25Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Backdoor Attack against Speaker Verification [86.43395230456339]
学習データを汚染することにより,話者検証モデルに隠れたバックドアを注入できることを示す。
また,既存のバックドア攻撃が話者認証攻撃に直接適用できないことも実証した。
論文 参考訳(メタデータ) (2020-10-22T11:10:08Z) - VenoMave: Targeted Poisoning Against Speech Recognition [30.448709704880518]
VENOMAVEは、音声認識に対する最初の訓練時間中毒攻撃である。
我々はTIDIGITSと音声コマンドの2つのデータセットに対する攻撃を評価した。
論文 参考訳(メタデータ) (2020-10-21T00:30:08Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
本研究では,自己指導型高水準表現の堅牢性について,敵攻撃に対する防御に利用して検討する。
ASVspoof 2019データセットの実験結果は、Mockingjayによって抽出されたハイレベルな表現が、敵の例の転送可能性を妨げることを示した。
論文 参考訳(メタデータ) (2020-06-05T03:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。