論文の概要: Acoustic Cybersecurity: Exploiting Voice-Activated Systems
- arxiv url: http://arxiv.org/abs/2312.00039v1
- Date: Thu, 23 Nov 2023 02:26:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 03:57:32.579106
- Title: Acoustic Cybersecurity: Exploiting Voice-Activated Systems
- Title(参考訳): アコースティックサイバーセキュリティ:音声アクティベートシステムの利用
- Authors: Forrest McKee and David Noever
- Abstract要約: 私たちの研究は、AmazonのAlexa、Android、iOS、Cortanaなど、さまざまなプラットフォームにおけるこれらの攻撃の可能性を広げています。
攻撃の成功率はおよそ60%で、遠隔で100フィート以上離れた場所からデバイスを起動できる。
これらの攻撃は重要なインフラを脅かし、多面的な防御戦略の必要性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we investigate the emerging threat of inaudible acoustic
attacks targeting digital voice assistants, a critical concern given their
projected prevalence to exceed the global population by 2024. Our research
extends the feasibility of these attacks across various platforms like Amazon's
Alexa, Android, iOS, and Cortana, revealing significant vulnerabilities in
smart devices. The twelve attack vectors identified include successful
manipulation of smart home devices and automotive systems, potential breaches
in military communication, and challenges in critical infrastructure security.
We quantitatively show that attack success rates hover around 60%, with the
ability to activate devices remotely from over 100 feet away. Additionally,
these attacks threaten critical infrastructure, emphasizing the need for
multifaceted defensive strategies combining acoustic shielding, advanced signal
processing, machine learning, and robust user authentication to mitigate these
risks.
- Abstract(参考訳): 本研究では,2024年までに人口が世界人口を超えると予測されていることから,デジタル音声アシスタントを対象とする不審な音響攻撃の脅威について検討する。
私たちの研究は、AmazonのAlexa、Android、iOS、Cortanaといったさまざまなプラットフォームにおけるこれらの攻撃の可能性を広げ、スマートデバイスの重大な脆弱性を明らかにしています。
特定された12の攻撃ベクターには、スマートホームデバイスと自動車システムの操作の成功、軍事通信の潜在的な侵入、重要なインフラセキュリティの課題が含まれる。
攻撃成功率は60%程度で、100フィート以上離れた場所からリモートでデバイスをアクティベートできることを定量的に示しています。
さらに、これらの攻撃は重要なインフラストラクチャを脅かし、音響シールド、高度な信号処理、マシンラーニング、堅牢なユーザ認証を組み合わせた多面的な防御戦略の必要性を強調している。
関連論文リスト
- A Survey on Adversarial Robustness of LiDAR-based Machine Learning Perception in Autonomous Vehicles [0.0]
この調査は、AML(Adversarial Machine Learning)と自律システムの交差点に焦点を当てている。
我々は、脅威の風景を包括的に探求し、センサーに対するサイバー攻撃と敵の摂動を包含する。
本稿では、敵の脅威に対する自律運転システムの安全性確保における課題と今後の課題を簡潔に概説する。
論文 参考訳(メタデータ) (2024-11-21T01:26:52Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Exploring Vulnerabilities and Protections in Large Language Models: A Survey [1.6179784294541053]
本稿では,Large Language Models (LLMs) のセキュリティ課題について検討する。
Prompt HackingとAdversarial Attacksの2つの主要分野に焦点を当てている。
これらのセキュリティ問題の詳細を明らかにすることで、この調査はレジリエントなAIシステム構築に関する広範な議論に貢献する。
論文 参考訳(メタデータ) (2024-06-01T00:11:09Z) - Rethinking the Vulnerabilities of Face Recognition Systems:From a Practical Perspective [53.24281798458074]
顔認識システム(FRS)は、監視やユーザー認証を含む重要なアプリケーションにますます統合されている。
最近の研究によると、FRSの脆弱性は敵(例えば、敵パッチ攻撃)やバックドア攻撃(例えば、データ中毒の訓練)であることが明らかになっている。
論文 参考訳(メタデータ) (2024-05-21T13:34:23Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - A Practical Survey on Emerging Threats from AI-driven Voice Attacks: How Vulnerable are Commercial Voice Control Systems? [13.115517847161428]
AIによる音声攻撃により、音声制御システムに新たなセキュリティ脆弱性が明らかになった。
本研究は,悪意ある音声攻撃に対する商用音声制御システムのレジリエンスを評価するための試みである。
以上の結果から,商用音声制御システムは既存の脅威に対する耐性を高めることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T21:51:13Z) - Adversarial Agents For Attacking Inaudible Voice Activated Devices [0.0]
本論文は、新しいインターネット・オブ・シングの構成に強化学習を適用した。
音声アクティベートデバイスに対する難聴攻撃の分析では,10点中7.6点のアラーム危険因子が確認された。
2024年までに、この新たな攻撃面は、地球上の人々よりも多くのデジタル音声アシスタントを含んでいるかもしれない。
論文 参考訳(メタデータ) (2023-07-23T02:18:30Z) - Push-Pull: Characterizing the Adversarial Robustness for Audio-Visual
Active Speaker Detection [88.74863771919445]
我々は、音声のみ、視覚のみ、および音声-視覚的敵対攻撃下でのAVASDモデルの脆弱性を明らかにする。
また,攻撃者が現実的な相手を見つけるのを困難にするため,新たな音声・視覚的相互作用損失(AVIL)を提案する。
論文 参考訳(メタデータ) (2022-10-03T08:10:12Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - SHARKS: Smart Hacking Approaches for RisK Scanning in Internet-of-Things
and Cyber-Physical Systems based on Machine Learning [5.265938973293016]
サイバー物理システム(CPS)とIoT(Internet-of-Things)デバイスは、ますます複数の機能にわたってデプロイされている。
これらのデバイスは、本質的にソフトウェア、ハードウェア、ネットワークスタック全体にわたって安全ではない。
本稿では,未知のシステム脆弱性の検出,脆弱性の管理,インシデント対応の改善のための革新的な手法を提案する。
論文 参考訳(メタデータ) (2021-01-07T22:01:30Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。