論文の概要: CBGBench: Fill in the Blank of Protein-Molecule Complex Binding Graph
- arxiv url: http://arxiv.org/abs/2406.10840v3
- Date: Thu, 10 Oct 2024 11:22:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:28:56.055993
- Title: CBGBench: Fill in the Blank of Protein-Molecule Complex Binding Graph
- Title(参考訳): CBGBench:タンパク質-分子複合体結合グラフのブランクを埋める
- Authors: Haitao Lin, Guojiang Zhao, Odin Zhang, Yufei Huang, Lirong Wu, Zicheng Liu, Siyuan Li, Cheng Tan, Zhifeng Gao, Stan Z. Li,
- Abstract要約: CBGBenchは構造ベースドラッグデザイン(SBDD)のベンチマークである
既存のメソッドを属性に基づいて分類することで、CBGBenchは様々な最先端メソッドを実装している。
我々は,これらのモデルを薬物設計に不可欠なタスクに適応させてきた。
- 参考スコア(独自算出の注目度): 66.11279161533619
- License:
- Abstract: Structure-based drug design (SBDD) aims to generate potential drugs that can bind to a target protein and is greatly expedited by the aid of AI techniques in generative models. However, a lack of systematic understanding persists due to the diverse settings, complex implementation, difficult reproducibility, and task singularity. Firstly, the absence of standardization can lead to unfair comparisons and inconclusive insights. To address this dilemma, we propose CBGBench, a comprehensive benchmark for SBDD, that unifies the task as a generative heterogeneous graph completion, analogous to fill-in-the-blank of the 3D complex binding graph. By categorizing existing methods based on their attributes, CBGBench facilitates a modular and extensible framework that implements various cutting-edge methods. Secondly, a single task on \textit{de novo} molecule generation can hardly reflect their capabilities. To broaden the scope, we have adapted these models to a range of tasks essential in drug design, which are considered sub-tasks within the graph fill-in-the-blank tasks. These tasks include the generative designation of \textit{de novo} molecules, linkers, fragments, scaffolds, and sidechains, all conditioned on the structures of protein pockets. Our evaluations are conducted with fairness, encompassing comprehensive perspectives on interaction, chemical properties, geometry authenticity, and substructure validity. We further provide the pre-trained versions of the state-of-the-art models and deep insights with analysis from empirical studies. The codebase for CBGBench is publicly accessible at \url{https://github.com/Edapinenut/CBGBench}.
- Abstract(参考訳): 構造に基づく薬物設計(SBDD)は、標的タンパク質に結合し、生成モデルにおけるAI技術の支援によって大幅に高速化される潜在的な薬物を生成することを目的としている。
しかし、体系的な理解の欠如は、様々な設定、複雑な実装、難しい再現性、タスク特異性によって継続する。
第一に、標準化の欠如は不公平な比較と決定的な洞察につながる可能性がある。
このジレンマに対処するために,SBDDの包括的なベンチマークであるCBGBenchを提案する。
既存のメソッドを属性に基づいて分類することで、CBGBenchは様々な最先端メソッドを実装するモジュラーで拡張可能なフレームワークを促進する。
第二に、‘textit{de novo} 分子生成における単一のタスクは、その能力をほとんど反映できない。
この範囲を広げるために、我々はこれらのモデルを薬物設計に不可欠な様々なタスクに適応させた。
これらのタスクには、タンパク質ポケットの構造に条件づけられた、textit{de novo}分子、リンカー、断片、足場、および側鎖の生成的命名が含まれる。
本評価は, 相互作用, 化学特性, 幾何学的信頼性, サブ構造的妥当性に関する包括的視点を包括的に包括的に包含して行う。
さらに、最先端モデルの事前学習版と、実証研究の分析による深い洞察を提供する。
CBGBench のコードベースは \url{https://github.com/Edapinenut/CBGBench} で公開されている。
関連論文リスト
- Atomas: Hierarchical Alignment on Molecule-Text for Unified Molecule Understanding and Generation [42.08917809689811]
SMILES文字列とテキストから表現を共同学習するマルチモーダルな分子表現学習フレームワークAtomasを提案する。
検索タスクでは、Atomasは堅牢な一般化能力を示し、ベースラインを平均30.8%上回っている。
生成タスクでは、Atomasは分子キャプションタスクと分子生成タスクの両方で最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-04-23T12:35:44Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
グラフマスク付きオートエンコーダのための統一フレームワークであるUGMAEを提案する。
まず,ノードの特異性を考慮した適応型特徴マスク生成器を開発した。
次に,階層型構造再構成と特徴再構成を併用し,総合的なグラフ情報を取得する。
論文 参考訳(メタデータ) (2024-02-12T19:39:26Z) - FoldToken: Learning Protein Language via Vector Quantization and Beyond [56.19308144551836]
タンパク質配列構造を離散シンボルとして表現するために textbfFoldTokenizer を導入する。
学習したシンボルを textbfFoldToken と呼び、FoldToken の配列が新しいタンパク質言語として機能する。
論文 参考訳(メタデータ) (2024-02-04T12:18:51Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
ターゲット認識型自動エンコーダであるTargetVAEを導入し、任意のタンパク質標的に対する高い結合親和性で生成する。
これは、タンパク質の異なる表現を単一のモデルに統一する最初の試みであり、これは我々がタンパク質マルチモーダルネットワーク(PMN)と呼ぶ。
論文 参考訳(メタデータ) (2023-08-02T12:08:17Z) - A Systematic Survey in Geometric Deep Learning for Structure-based Drug
Design [63.30166298698985]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
幾何学的深層学習の最近の進歩は、3次元幾何データの統合と処理に焦点をあてて、構造に基づく薬物設計の分野を大いに進歩させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Generative Pretrained Autoregressive Transformer Graph Neural Network
applied to the Analysis and Discovery of Novel Proteins [0.0]
本稿では,タンパク質モデリングにおける複雑な前方および逆問題を解決するために,フレキシブル言語モデルに基づくディープラーニング戦略を適用した。
本モデルを用いて, 二次構造含量(残量レベル, 全体含量), タンパク質溶解度, シークエンシングタスクの予測を行った。
追加タスクを追加することで、モデルが全体的なパフォーマンスを改善するために活用する創発的なシナジーが得られることが分かりました。
論文 参考訳(メタデータ) (2023-05-07T12:30:24Z) - Structure-based Drug Design with Equivariant Diffusion Models [40.73626627266543]
本稿では,タンパク質ポケットに新しい条件を付加したSE(3)-同変拡散モデルDiffSBDDを提案する。
我々のサイリコ実験では、DiffSBDDが地上の真実データの統計を効果的に捉えていることが示されています。
これらの結果は、拡散モデルが従来の方法よりも正確に構造データの複雑な分布を表すという仮定を支持する。
論文 参考訳(メタデータ) (2022-10-24T15:51:21Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。