論文の概要: Enriching the Machine Learning Workloads in BigBench
- arxiv url: http://arxiv.org/abs/2406.10843v1
- Date: Sun, 16 Jun 2024 08:32:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 20:31:44.395321
- Title: Enriching the Machine Learning Workloads in BigBench
- Title(参考訳): BigBenchにおける機械学習ワークロードの強化
- Authors: Matthias Polag, Todor Ivanov, Timo Eichhorn,
- Abstract要約: この作業は、改善されたBigBench V2を3つの新しいワークロードで強化し、マシンラーニングアルゴリズムのカバレッジを拡大する。
私たちのワークロードでは、複数のアルゴリズムを使用して、MLlib、SystemML、Scikit-learn、Pandasといった一般的なライブラリ間で、同じアルゴリズムの異なる実装を比較しています。
- 参考スコア(独自算出の注目度): 0.4178382980763478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of Big Data and the growing support for Machine Learning, Deep Learning and Artificial Intelligence algorithms in the current software systems, there is an urgent need of standardized application benchmarks that stress test and evaluate these new technologies. Relying on the standardized BigBench (TPCx-BB) benchmark, this work enriches the improved BigBench V2 with three new workloads and expands the coverage of machine learning algorithms. Our workloads utilize multiple algorithms and compare different implementations for the same algorithm across several popular libraries like MLlib, SystemML, Scikit-learn and Pandas, demonstrating the relevance and usability of our benchmark extension.
- Abstract(参考訳): ビッグデータの時代と、現在のソフトウェアシステムにおける機械学習、ディープラーニング、人工知能アルゴリズムのサポートの増大の中で、これらの新しいテクノロジをテストし評価する標準化されたアプリケーションベンチマークが緊急に必要である。
標準化されたBigBench(TPCx-BB)ベンチマークに基づいて、この作業は改善されたBigBench V2を3つの新しいワークロードで強化し、マシンラーニングアルゴリズムのカバレッジを拡大する。
我々のワークロードは、複数のアルゴリズムを利用し、MLlib、SystemML、Scikit-learn、Pandasといった一般的なライブラリで同じアルゴリズムの異なる実装を比較し、ベンチマーク拡張の妥当性と使用性を示しています。
関連論文リスト
- Benchmarking Predictive Coding Networks -- Made Simple [48.652114040426625]
機械学習における予測符号化ネットワーク(PCN)の効率性とスケーラビリティの問題に取り組む。
そこで我々は,PCXと呼ばれる,パフォーマンスと簡易性を重視したライブラリを提案する。
我々は,PCNの既存アルゴリズムと,生物工学的な深層学習コミュニティで普及している他の手法を併用して,このようなベンチマークを広範囲に実施する。
論文 参考訳(メタデータ) (2024-07-01T10:33:44Z) - Machine Learning Augmented Branch and Bound for Mixed Integer Linear
Programming [11.293025183996832]
Mixed Linear Programming (MILP)は、幅広いアプリケーションに対して強力なモデリング言語を提供する。
近年,ブランチ・アンド・バウンドアルゴリズムに関わる主要なタスクをすべて強化するための機械学習アルゴリズムの利用が爆発的な発展を遂げている。
特に、分岐とバウンドの効率の指標を自動的に最適化する機械学習アルゴリズムに注意を払っている。
論文 参考訳(メタデータ) (2024-02-08T09:19:26Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - Tree-Based Adaptive Model Learning [62.997667081978825]
我々はKearns-Vazirani学習アルゴリズムを拡張し、時間とともに変化するシステムを扱う。
本稿では,学習前の動作を再利用し,更新し,LearnerLibライブラリに実装し,大規模な実例で評価する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-31T21:24:22Z) - MQBench: Towards Reproducible and Deployable Model Quantization
Benchmark [53.12623958951738]
MQBenchは、モデル量子化アルゴリズムの評価、分析、およびデプロイ可能性のベンチマークを行う最初の試みである。
我々は、CPU、GPU、ASIC、DSPを含む実世界のデプロイのための複数のプラットフォームを選択し、最先端の量子化アルゴリズムを評価する。
包括的な分析を行い、直感的、直感的、あるいは反直感的な洞察を見出す。
論文 参考訳(メタデータ) (2021-11-05T23:38:44Z) - Benchmarking Processor Performance by Multi-Threaded Machine Learning
Algorithms [0.0]
本稿では,マルチスレッド機械学習クラスタリングアルゴリズムの性能比較を行う。
私は、アルゴリズムのパフォーマンス特性を決定するために、線形回帰、ランダムフォレスト、K-Nearest Neighborsに取り組んでいます。
論文 参考訳(メタデータ) (2021-09-11T13:26:58Z) - Generative and reproducible benchmarks for comprehensive evaluation of
machine learning classifiers [6.605210393590192]
Diverse and GENerative ML Benchmark (DIGEN)は、機械学習アルゴリズムのベンチマークのための合成データセットの集合である。
詳細なドキュメンテーションと分析を備えたリソースはオープンソースであり、GitHubで公開されている。
論文 参考訳(メタデータ) (2021-07-14T03:58:02Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z) - Guidelines for enhancing data locality in selected machine learning
algorithms [0.0]
データ局所性を利用した機械学習アルゴリズムの性能向上手法の1つを分析する。
繰り返しのデータアクセスは、データ移動における冗長性と見なすことができる。
この研究は、結果を直接再利用することによって、これらの冗長性を避けるためのいくつかの機会を特定する。
論文 参考訳(メタデータ) (2020-01-09T14:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。