論文の概要: Graph Neural Reaction Diffusion Models
- arxiv url: http://arxiv.org/abs/2406.10871v1
- Date: Sun, 16 Jun 2024 09:46:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 20:21:59.034760
- Title: Graph Neural Reaction Diffusion Models
- Title(参考訳): グラフニューラル反応拡散モデル
- Authors: Moshe Eliasof, Eldad Haber, Eran Treister,
- Abstract要約: 本稿では,ニューラルRDシステムに基づく反応GNNの新たなファミリーを提案する。
本稿では,RDGNNの理論的特性とその実装について論じるとともに,最先端手法の競争性能を向上させるか,提供するかを示す。
- 参考スコア(独自算出の注目度): 14.164952387868341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Graph Neural Networks (GNNs) and Neural Ordinary and Partial Differential Equations has been extensively studied in recent years. GNN architectures powered by neural differential equations allow us to reason about their behavior, and develop GNNs with desired properties such as controlled smoothing or energy conservation. In this paper we take inspiration from Turing instabilities in a Reaction Diffusion (RD) system of partial differential equations, and propose a novel family of GNNs based on neural RD systems. We \textcolor{black}{demonstrate} that our RDGNN is powerful for the modeling of various data types, from homophilic, to heterophilic, and spatio-temporal datasets. We discuss the theoretical properties of our RDGNN, its implementation, and show that it improves or offers competitive performance to state-of-the-art methods.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)とニューラル正規式と部分微分方程式の統合は近年広く研究されている。
ニューラル微分方程式を応用したGNNアーキテクチャは、その挙動を推論し、制御された平滑化やエネルギー保存といった望ましい特性を持つGNNを開発する。
本稿では、偏微分方程式の反応拡散(RD)系におけるチューリング不安定性から着想を得て、ニューラルRD系に基づく新しいGNNファミリーを提案する。
RDGNNは、ホモフィリック、ヘテロフィリック、時空間データセットなど、さまざまなデータ型をモデリングするのに強力である。
本稿では,RDGNNの理論的特性とその実装について論じるとともに,最先端手法の競争性能を向上させるか,提供するかを示す。
関連論文リスト
- GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural
Networks [11.110435047801506]
本稿では, 分散保存アグリゲーション関数 (VPA) を提案する。
その結果, 正常化フリー, 自己正規化GNNへの道を開くことができた。
論文 参考訳(メタデータ) (2024-03-07T18:52:27Z) - On The Temporal Domain of Differential Equation Inspired Graph Neural
Networks [14.779420473274737]
我々のモデルは、TDE-GNNと呼ばれ、典型的な一階法や二階法を超越した、幅広い時間的ダイナミクスを捉えることができる。
いくつかのグラフベンチマークで予め定義された時間的ダイナミクスを使用するのではなく,我々の手法を用いて時間的依存を学習する利点を実証する。
論文 参考訳(メタデータ) (2024-01-20T01:12:57Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible Neural Network (INN) は、設計によって可逆性を持つニューラルネットワークアーキテクチャである。
その可逆性とヤコビアンのトラクタビリティのおかげで、IGNは確率的モデリング、生成的モデリング、表現的学習など、さまざまな機械学習応用がある。
論文 参考訳(メタデータ) (2022-04-15T10:45:26Z) - Continuous-Depth Neural Models for Dynamic Graph Prediction [16.89981677708299]
連続深度グラフニューラルネットワーク(GNN)の枠組みを紹介する。
ニューラルグラフ微分方程式(ニューラルグラフ微分方程式)は、GNNに対抗して形式化される。
その結果、遺伝的制御ネットワークにおけるトラフィック予測や予測など、アプリケーション全体にわたって提案されたモデルの有効性が証明された。
論文 参考訳(メタデータ) (2021-06-22T07:30:35Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and
(gradient) stable architecture for learning long time dependencies [15.2292571922932]
本稿では,リカレントニューラルネットワークのための新しいアーキテクチャを提案する。
提案するRNNは, 2次常微分方程式系の時間分解に基づく。
実験の結果,提案したRNNは,様々なベンチマークによる最先端技術に匹敵する性能を示した。
論文 参考訳(メタデータ) (2020-10-02T12:35:04Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。