VELOCITI: Benchmarking Video-Language Compositional Reasoning with Strict Entailment
- URL: http://arxiv.org/abs/2406.10889v2
- Date: Sun, 30 Mar 2025 14:07:22 GMT
- Title: VELOCITI: Benchmarking Video-Language Compositional Reasoning with Strict Entailment
- Authors: Darshana Saravanan, Varun Gupta, Darshan Singh, Zeeshan Khan, Vineet Gandhi, Makarand Tapaswi,
- Abstract summary: We introduce VELOCITI, a benchmark to study Video-LLMs by disentangling and assessing the comprehension of agents.<n>We adopt the Video-Language Entailment setup and propose StrictVLE that requires correct classification (rather than ranking) of the positive and negative caption.<n>Results show that action understanding lags behind agents, and negative captions created using entities appearing in the video perform worse than those obtained from pure text manipulation.
- Score: 19.313541287648473
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A fundamental aspect of compositional reasoning in a video is associating people and their actions across time. Recent years have seen great progress in general-purpose vision or video models and a move towards long-video understanding. While exciting, we take a step back and ask: are current models good at compositional reasoning on short videos? To this end, we introduce VELOCITI, a benchmark to study Video-LLMs by disentangling and assessing the comprehension of agents, actions, and their associations across multiple events. We adopt the Video-Language Entailment setup and propose StrictVLE that requires correct classification (rather than ranking) of the positive and negative caption. We evaluate several models and observe that even the best, LLaVA-OneVision (44.5%) and Gemini-1.5-Pro (49.3%), are far from human accuracy at 93.0%. Results show that action understanding lags behind agents, and negative captions created using entities appearing in the video perform worse than those obtained from pure text manipulation. We also present challenges with ClassicVLE and multiple-choice (MC) evaluation, strengthening our preference for StrictVLE. Finally, we validate that our benchmark requires visual inputs of multiple frames making it ideal to study video-language compositional reasoning.
Related papers
- VideoITG: Multimodal Video Understanding with Instructed Temporal Grounding [45.83476222676765]
We propose Instructed Temporal Grounding for Videos (VideoITG), featuring customized frame sampling aligned with user instructions.<n>The core of VideoITG is the VidThinker pipeline, an automated annotation framework that explicitly mimics the human annotation process.<n>We show that VideoITG achieves consistent performance improvements across multiple multimodal video understanding benchmarks.
arXiv Detail & Related papers (2025-07-17T17:59:59Z) - GLIMPSE: Do Large Vision-Language Models Truly Think With Videos or Just Glimpse at Them? [76.67205289006795]
GLIMPSE consists of 3,269 videos and over 4,342 highly visual-centric questions across 11 categories.<n>All questions are carefully crafted by human annotators and require watching the entire video and reasoning over full video context.<n>In human evaluations, GLIMPSE achieves 94.82% accuracy, but current LVLMs face significant challenges.
arXiv Detail & Related papers (2025-07-13T04:44:57Z) - VideoReasonBench: Can MLLMs Perform Vision-Centric Complex Video Reasoning? [18.9270920369958]
Long chain-of-thought (CoT) reasoning can significantly enhance the performance of large language models (LLMs) on complex tasks.<n>Recent efforts have proposed benchmarks aimed at video reasoning, but tasks are often knowledge-driven and do not rely heavily on visual content.<n>We introduce VideoReasonBench, a benchmark designed to evaluate vision-centric, complex video reasoning.
arXiv Detail & Related papers (2025-05-29T11:33:43Z) - SAMA: Towards Multi-Turn Referential Grounded Video Chat with Large Language Models [80.3895950009792]
Achieving fine-grained-temporal understanding in videos remains a major challenge for current Video Large Multimodels (Video LMMs)<n>We contribute in three core aspects: dataset, model, and benchmark.<n>First, we introduce SAMA-239K, a large-scale dataset comprising 15K videos specifically to enable joint learning of video understanding, grounding, and multi-turn video chat.<n>Second, we propose the SAMA model, which incorporates a versatile-temporal context aggregator and a Segment Model to jointly enhance fine-grained video comprehension and precise grounding capabilities.
arXiv Detail & Related papers (2025-05-24T18:13:16Z) - On the Consistency of Video Large Language Models in Temporal Comprehension [57.985769348320616]
Video large language models (Video-LLMs) can temporally ground language queries and retrieve video moments.
We conduct a study on prediction consistency -- a key indicator for robustness and trustworthiness of temporal grounding.
arXiv Detail & Related papers (2024-11-20T00:47:17Z) - TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models [75.42002690128486]
TemporalBench is a new benchmark dedicated to evaluating fine-grained temporal understanding in videos.
It consists of 10K video question-answer pairs, derived from 2K high-quality human annotations detailing the temporal dynamics in video clips.
Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - Temporal Reasoning Transfer from Text to Video [51.68487044397409]
Video Large Language Models (Video LLMs) struggle with tracking temporal changes and reasoning about temporal relationships.
We introduce the Textual Temporal reasoning Transfer (T3) to transfer temporal reasoning abilities from text to video domains.
LongVA-7B model achieves competitive performance on comprehensive video benchmarks.
arXiv Detail & Related papers (2024-10-08T16:10:29Z) - VrdONE: One-stage Video Visual Relation Detection [30.983521962897477]
Video Visual Relation Detection (VidVRD) focuses on understanding how entities over time and space in videos.
Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation are present and another for determining their temporal boundaries.
We propose VrdONE, a streamlined yet efficacious one-stage model for VidVRD.
arXiv Detail & Related papers (2024-08-18T08:38:20Z) - Investigating Video Reasoning Capability of Large Language Models with Tropes in Movies [69.28082193942991]
This paper introduces a novel dataset, Tropes in Movies (TiM), designed as a testbed for exploring two critical yet previously overlooked video reasoning skills.
utilizing tropes from movie storytelling, TiM evaluates the reasoning capabilities of state-of-the-art LLM-based approaches.
To address these deficiencies, we propose Face-Enhanced Viper of Role Interactions (FEVoRI) and Context Query Reduction (ConQueR)
arXiv Detail & Related papers (2024-06-16T12:58:31Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
We introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information.
At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings.
At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer.
arXiv Detail & Related papers (2023-12-04T19:48:02Z) - Vamos: Versatile Action Models for Video Understanding [23.631145570126268]
We propose versatile action models (Vamos), a learning framework powered by a large language model as the reasoner''
We evaluate Vamos on five benchmarks, Ego4D, NeXT-QA, IntentQA, Spacewalk-18, and Ego on its capability to model temporal dynamics, encode visual history, and perform reasoning.
arXiv Detail & Related papers (2023-11-22T17:44:24Z) - VideoCon: Robust Video-Language Alignment via Contrast Captions [80.08882631838914]
Video-language alignment models are not robust to semantically-plausible contrastive changes in the video captions.
Our work identifies a broad spectrum of contrast misalignments, such as replacing entities, actions, and flipping event order.
Our model sets new state of the art zero-shot performance in temporally-extensive video-language tasks.
arXiv Detail & Related papers (2023-11-15T19:51:57Z) - Helping Hands: An Object-Aware Ego-Centric Video Recognition Model [60.350851196619296]
We introduce an object-aware decoder for improving the performance of ego-centric representations on ego-centric videos.
We show that the model can act as a drop-in replacement for an ego-awareness video model to improve performance through visual-text grounding.
arXiv Detail & Related papers (2023-08-15T17:58:11Z) - Let's Think Frame by Frame with VIP: A Video Infilling and Prediction
Dataset for Evaluating Video Chain-of-Thought [62.619076257298204]
We motivate framing video reasoning as the sequential understanding of a small number of video reasonings.
We introduce VIP, an inference-time challenge dataset designed to explore models' reasoning capabilities through video chain-of-thought.
We benchmark GPT-4, GPT-3, and VICUNA on VIP, demonstrate the performance gap in complex video reasoning tasks, and encourage future work.
arXiv Detail & Related papers (2023-05-23T10:26:42Z) - Perception Test: A Diagnostic Benchmark for Multimodal Video Models [78.64546291816117]
We propose a novel multimodal video benchmark to evaluate the perception and reasoning skills of pre-trained multimodal models.
The Perception Test focuses on skills (Memory, Abstraction, Physics, Semantics) and types of reasoning (descriptive, explanatory, predictive, counterfactual) across video, audio, and text modalities.
The benchmark probes pre-trained models for their transfer capabilities, in a zero-shot / few-shot or limited finetuning regime.
arXiv Detail & Related papers (2023-05-23T07:54:37Z) - MERLOT Reserve: Neural Script Knowledge through Vision and Language and
Sound [90.1857707251566]
We introduce MERLOT Reserve, a model that represents videos jointly over time.
We replace snippets of text and audio with a MASK token; the model learns by choosing the correct masked-out snippet.
Our objective learns faster than alternatives, and performs well at scale.
arXiv Detail & Related papers (2022-01-07T19:00:21Z) - ASCNet: Self-supervised Video Representation Learning with
Appearance-Speed Consistency [62.38914747727636]
We study self-supervised video representation learning, which is a challenging task due to 1) a lack of labels for explicit supervision and 2) unstructured and noisy visual information.
Existing methods mainly use contrastive loss with video clips as the instances and learn visual representation by discriminating instances from each other.
In this paper, we observe that the consistency between positive samples is the key to learn robust video representations.
arXiv Detail & Related papers (2021-06-04T08:44:50Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
Self-supervised visual representation learning is key for efficient video analysis.
Recent success in learning image representations suggests contrastive learning is a promising framework to tackle this challenge.
We introduce a cooperative variant of contrastive learning to utilize complementary information across views.
arXiv Detail & Related papers (2021-04-30T05:46:02Z) - We Have So Much In Common: Modeling Semantic Relational Set Abstractions
in Videos [29.483605238401577]
We propose an approach for learning semantic relational set abstractions on videos, inspired by human learning.
We combine visual features with natural language supervision to generate high-level representations of similarities across a set of videos.
arXiv Detail & Related papers (2020-08-12T22:57:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.