RWKU: Benchmarking Real-World Knowledge Unlearning for Large Language Models
- URL: http://arxiv.org/abs/2406.10890v1
- Date: Sun, 16 Jun 2024 10:47:21 GMT
- Title: RWKU: Benchmarking Real-World Knowledge Unlearning for Large Language Models
- Authors: Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen, Kang Liu, Jun Zhao,
- Abstract summary: Large language models (LLMs) inevitably memorize sensitive, copyrighted, and harmful knowledge from the training corpus.
We propose a Real-World Knowledge Unlearning benchmark (RWKU) for LLM unlearning.
- Score: 20.944353802665965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) inevitably memorize sensitive, copyrighted, and harmful knowledge from the training corpus; therefore, it is crucial to erase this knowledge from the models. Machine unlearning is a promising solution for efficiently removing specific knowledge by post hoc modifying models. In this paper, we propose a Real-World Knowledge Unlearning benchmark (RWKU) for LLM unlearning. RWKU is designed based on the following three key factors: (1) For the task setting, we consider a more practical and challenging unlearning setting, where neither the forget corpus nor the retain corpus is accessible. (2) For the knowledge source, we choose 200 real-world famous people as the unlearning targets and show that such popular knowledge is widely present in various LLMs. (3) For the evaluation framework, we design the forget set and the retain set to evaluate the model's capabilities across various real-world applications. Regarding the forget set, we provide four four membership inference attack (MIA) methods and nine kinds of adversarial attack probes to rigorously test unlearning efficacy. Regarding the retain set, we assess locality and utility in terms of neighbor perturbation, general ability, reasoning ability, truthfulness, factuality, and fluency. We conduct extensive experiments across two unlearning scenarios, two models and six baseline methods and obtain some meaningful findings. We release our benchmark and code publicly at http://rwku-bench.github.io for future work.
Related papers
- Evaluating Deep Unlearning in Large Language Models [26.01778651411487]
We investigate whether current unlearning methods for large language models succeed beyond superficial unlearning of facts.
We design the metric, recall, to quantify the extent of deep unlearning.
Our findings reveal that in the task of deep unlearning only a single fact, they either fail to properly unlearn with high recall, or end up unlearning many other irrelevant facts.
arXiv Detail & Related papers (2024-10-19T16:40:08Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content.
We propose MUSE, a comprehensive machine unlearning evaluation benchmark.
We benchmark how effectively eight popular unlearning algorithms can unlearn Harry Potter books and news articles.
arXiv Detail & Related papers (2024-07-08T23:47:29Z) - To Forget or Not? Towards Practical Knowledge Unlearning for Large Language Models [39.39428450239399]
Large Language Models (LLMs) trained on extensive corpora inevitably retain sensitive data, such as personal privacy information and copyrighted material.
Recent advancements in knowledge unlearning involve updating LLM parameters to erase specific knowledge.
We introduce KnowUnDo to evaluate if the unlearning process inadvertently erases essential knowledge.
arXiv Detail & Related papers (2024-07-02T03:34:16Z) - What Matters in Memorizing and Recalling Facts? Multifaceted Benchmarks for Knowledge Probing in Language Models [15.057992220389604]
Language models often struggle with handling factual knowledge, exhibiting factual hallucination issue.
We introduce a knowledge probing benchmark, BELIEF(ICL), to evaluate the knowledge recall ability of both encoder- and decoder-based pre-trained language models.
We semi-automatically create MyriadLAMA, which has massively diverse prompts.
arXiv Detail & Related papers (2024-06-18T05:11:35Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Ranking Large Language Models without Ground Truth [24.751931637152524]
Evaluation and ranking of large language models (LLMs) has become an important problem with the proliferation of these models.
We provide a novel perspective where, given a dataset of prompts, we rank them without access to any ground truth or reference responses.
Applying this idea repeatedly, we propose two methods to rank LLMs.
arXiv Detail & Related papers (2024-02-21T00:49:43Z) - TOFU: A Task of Fictitious Unlearning for LLMs [99.92305790945507]
Large language models trained on massive corpora of data from the web can reproduce sensitive or private data raising both legal and ethical concerns.
Unlearning, or tuning models to forget information present in their training data, provides us with a way to protect private data after training.
We present TOFU, a benchmark aimed at helping deepen our understanding of unlearning.
arXiv Detail & Related papers (2024-01-11T18:57:12Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
We construct a Knowledge-oriented LLM Assessment benchmark (KoLA)
We mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks.
We use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, to evaluate the capacity to handle unseen data and evolving knowledge.
arXiv Detail & Related papers (2023-06-15T17:20:46Z) - Knowledge-driven Data Construction for Zero-shot Evaluation in
Commonsense Question Answering [80.60605604261416]
We propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks.
We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks.
We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks.
arXiv Detail & Related papers (2020-11-07T22:52:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.