LUME: LLM Unlearning with Multitask Evaluations
- URL: http://arxiv.org/abs/2502.15097v3
- Date: Thu, 27 Feb 2025 04:41:34 GMT
- Title: LUME: LLM Unlearning with Multitask Evaluations
- Authors: Anil Ramakrishna, Yixin Wan, Xiaomeng Jin, Kai-Wei Chang, Zhiqi Bu, Bhanukiran Vinzamuri, Volkan Cevher, Mingyi Hong, Rahul Gupta,
- Abstract summary: Unlearning aims to remove copyrighted, sensitive, or private content from large language models (LLMs) without a full retraining.<n>We develop a multi-task unlearning benchmark (LUME) which features three tasks: (1) unlearn synthetically generated creative short novels, (2) unlearn synthetic biographies with sensitive information, and (3) unlearn a collection of public biographies.
- Score: 106.83812472773522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlearning aims to remove copyrighted, sensitive, or private content from large language models (LLMs) without a full retraining. In this work, we develop a multi-task unlearning benchmark (LUME) which features three tasks: (1) unlearn synthetically generated creative short novels, (2) unlearn synthetic biographies with sensitive information, and (3) unlearn a collection of public biographies. We further release two fine-tuned LLMs of 1B and 7B parameter sizes as the target models. We conduct detailed evaluations of several recently proposed unlearning algorithms and present results on carefully crafted metrics to understand their behavior and limitations.
Related papers
- Soft Token Attacks Cannot Reliably Audit Unlearning in Large Language Models [5.807314706494602]
We show that soft token attacks (STAs) can successfully extract purportedly unlearned information from large language models (LLMs)
Our work highlights the need for better evaluation baselines, and more appropriate auditing tools for assessing the effectiveness of unlearning.
arXiv Detail & Related papers (2025-02-20T13:22:33Z) - Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes.
We show that unlearning has a notable impact on general model capabilities.
We show that doing 5-shot prompting or rephrasing the question in simple ways can lead to an over ten-fold increase in accuracy on unlearning benchmarks.
arXiv Detail & Related papers (2024-11-18T22:31:17Z) - Catastrophic Failure of LLM Unlearning via Quantization [36.524827594501495]
We show that applying quantization to models that have undergone unlearning can restore the "forgotten" information.<n>We find that for unlearning methods with utility constraints, the unlearned model retains an average of 21% of the intended forgotten knowledge in full precision.
arXiv Detail & Related papers (2024-10-21T19:28:37Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content.
We propose MUSE, a comprehensive machine unlearning evaluation benchmark.
We benchmark how effectively eight popular unlearning algorithms can unlearn Harry Potter books and news articles.
arXiv Detail & Related papers (2024-07-08T23:47:29Z) - Opt-Out: Investigating Entity-Level Unlearning for Large Language Models via Optimal Transport [37.172662930947446]
Large language models inadvertently disclose private, sensitive information to their users.<n>We introduce Opt-Out, an optimal transport-based unlearning method.<n>We also present the first entity-level unlearning dataset.
arXiv Detail & Related papers (2024-06-18T06:54:05Z) - Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference [39.29939437034823]
We propose a novel unlearning framework called Unlearning from Logit Difference (ULD)
Our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold.
arXiv Detail & Related papers (2024-06-12T19:26:35Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood.
We find instruction tuning, and not model size, is the key to the LLM's zero-shot summarization capability.
arXiv Detail & Related papers (2023-01-31T18:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.