論文の概要: Benchmarking Label Noise in Instance Segmentation: Spatial Noise Matters
- arxiv url: http://arxiv.org/abs/2406.10891v1
- Date: Sun, 16 Jun 2024 10:49:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-06-18 20:12:13.979509
- Title: Benchmarking Label Noise in Instance Segmentation: Spatial Noise Matters
- Title(参考訳): ケースセグメンテーションにおけるラベルノイズのベンチマーク:空間騒音
- Authors: Moshe Kimhi, Eden Grad, Lion Halika, Chaim Baskin,
- Abstract要約: 本研究は,各種モデルによるセグメンテーションマスクの品質について光を当てる。
ラベルノイズによる学習に対処するために設計された一般的な手法の有効性に挑戦する。
- 参考スコア(独自算出の注目度): 2.53740603524637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining accurate labels for instance segmentation is particularly challenging due to the complex nature of the task. Each image necessitates multiple annotations, encompassing not only the object's class but also its precise spatial boundaries. These requirements elevate the likelihood of errors and inconsistencies in both manual and automated annotation processes. By simulating different noise conditions, we provide a realistic scenario for assessing the robustness and generalization capabilities of instance segmentation models in different segmentation tasks, introducing COCO-N and Cityscapes-N. We also propose a benchmark for weakly annotation noise, dubbed COCO-WAN, which utilizes foundation models and weak annotations to simulate semi-automated annotation tools and their noisy labels. This study sheds light on the quality of segmentation masks produced by various models and challenges the efficacy of popular methods designed to address learning with label noise.
- Abstract(参考訳): タスクの複雑な性質のため、インスタンスセグメンテーションの正確なラベルを取得することは特に困難である。
各画像は、オブジェクトのクラスだけでなく、その正確な空間境界を含む複数のアノテーションを必要とする。
これらの要件は、手動および自動化されたアノテーションプロセスのエラーや矛盾の可能性を高める。
異なるノイズ条件をシミュレートすることにより、異なるセグメンテーションタスクにおけるインスタンスセグメンテーションモデルの堅牢性と一般化能力を評価し、COCO-NとCityscapes-Nを導入するための現実的なシナリオを提供する。
また,半自動アノテーションツールとそのノイズラベルをシミュレートするために基礎モデルと弱いアノテーションを利用するCOCO-WANと呼ばれる弱いアノテーションノイズのベンチマークも提案する。
本研究は,様々なモデルにより生成されるセグメンテーションマスクの品質に光を当て,ラベルノイズによる学習に対処するために設計された一般的な手法の有効性に挑戦する。
関連論文リスト
- Tackling Few-Shot Segmentation in Remote Sensing via Inpainting Diffusion Model [0.3749861135832073]
数ショットのセグメンテーションタスクでは、モデルは通常、豊富なアノテーションを持つベースクラスで訓練され、後に限られた例を持つ新しいクラスに適応する。
本稿では,拡散モデルを利用して新しいクラスオブジェクトを多種多様に生成する簡単な手法を提案する。
イメージインペイントタスクとして問題をフレーミングすることにより,様々な環境下での新規クラスの可視例を合成する。
論文 参考訳(メタデータ) (2025-03-05T02:08:51Z) - One-step Noisy Label Mitigation [86.57572253460125]
ノイズラベルのトレーニング過程に対する有害な影響の軽減がますます重要になっている。
モデルに依存しないノイズラベル緩和パラダイムである1ステップアンチノイズ(OSA)を提案する。
我々はOSAの優位性を実証的に実証し、トレーニングの堅牢性の向上、タスク転送性の向上、デプロイメントの容易性、計算コストの削減を強調した。
論文 参考訳(メタデータ) (2024-10-02T18:42:56Z) - Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets [51.74296438621836]
Scribbles for Allは、スクリブルラベルに基づいて訓練されたセマンティックセグメンテーションのためのラベルおよびトレーニングデータ生成アルゴリズムである。
弱い監督の源泉としてのスクリブルの主な制限は、スクリブルセグメンテーションのための挑戦的なデータセットの欠如である。
Scribbles for Allは、いくつかの人気のあるセグメンテーションデータセットのスクリブルラベルを提供し、密集したアノテーションを持つデータセットのスクリブルラベルを自動的に生成するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-08-22T15:29:08Z) - NoisyAG-News: A Benchmark for Addressing Instance-Dependent Noise in Text Classification [7.464154519547575]
ノイズラベルを用いた学習に関する既存の研究は、主に合成ノイズパターンに焦点を当てている。
実世界のテキスト分類設定においてラベルノイズをよりよく理解するためのベンチマークデータセットを構築した。
以上の結果から,事前学習モデルでは合成ノイズに耐性があるものの,インスタンス依存ノイズには耐え難いことが判明した。
論文 参考訳(メタデータ) (2024-07-09T06:18:40Z) - How to Efficiently Annotate Images for Best-Performing Deep Learning Based Segmentation Models: An Empirical Study with Weak and Noisy Annotations and Segment Anything Model [16.745318743249864]
ディープニューラルネットワーク(DNN)は、様々な画像セグメンテーションタスクで例外的なパフォーマンスを示している。
この課題を軽減するために、弱いラベルを使ったり、より正確でない(ノイズの多い)アノテーションを使ったりできる。
ノイズと弱いラベルは生成がかなり早くなり、同時にアノテートされた画像がより高速になる。
論文 参考訳(メタデータ) (2023-12-17T04:26:42Z) - Universal Segmentation at Arbitrary Granularity with Language Instruction [56.39902660380342]
言語命令のガイダンスを用いて任意の意味レベルでセグメンテーションを行うことができるユニバーサルセグメンテーションモデルUniLSegを提案する。
UniLSegをトレーニングするために、元の多様な分布から統一されたデータ形式にタスク群を再構成し、セグメンテーションターゲットを入力として記述したテキストと対応するマスクを出力する。
論文 参考訳(メタデータ) (2023-12-04T04:47:48Z) - Rethinking the Value of Labels for Instance-Dependent Label Noise
Learning [43.481591776038144]
実世界のアプリケーションにおけるノイズの多いラベルは、しばしば真のラベルと機能の両方に依存します。
本研究では、ノイズ遷移行列を明示的にモデル化しない新しい深層生成モデルを用いて、インスタンス依存ラベルノイズに対処する。
提案アルゴリズムは,カジュアルな表現学習を活用し,データから高レベルのコンテンツとスタイルの潜伏要素を同時に識別する。
論文 参考訳(メタデータ) (2023-05-10T15:29:07Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
本稿では,文脈認識型分類器の学習を通じて文脈ヒントを利用する。
本手法はモデルに依存しないため,ジェネリックセグメンテーションモデルにも容易に適用できる。
無視できる追加パラメータと+2%の推論時間だけで、小型モデルと大型モデルの両方で十分な性能向上が達成されている。
論文 参考訳(メタデータ) (2023-03-21T07:00:35Z) - Learning Confident Classifiers in the Presence of Label Noise [5.829762367794509]
本稿では,ノイズ観測のための確率論的モデルを提案し,信頼性の高い分類とセグメンテーションモデルの構築を可能にする。
実験により,本アルゴリズムは,検討された分類問題と分割問題に対して,最先端の解よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-01-02T04:27:25Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
Select-Enhanced Noisy label Training (SENT)を提案する。
SENTは、データ駆動の柔軟性を保ちながら、メタ学習に依存しない。
自己学習とラベルの破損の設定の下で、強力なベースラインよりもパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2022-12-28T10:12:13Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
ノイズの多いラベルでディープニューラルネットワーク(DNN)を訓練することは事実上難しい。
従来の取り組みでは、統合されたデノナイジングフローで部分データや完全なデータを扱う傾向があります。
本研究では,ノイズの多いデータを分割・分散的に処理するために,CREMAと呼ばれる粗大な頑健な学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-23T02:06:38Z) - Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
本稿では,2段階のクリーンサンプル識別手法を提案する。
まず,クリーンサンプルの早期同定にクラスレベルの特徴クラスタリング手法を用いる。
次に, 基底真理クラス境界に近い残余のクリーンサンプルについて, 一貫性に基づく新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-07-29T04:54:57Z) - SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation [58.61946589036262]
本稿では,ブラックボックスモデルを用いて,擬似ラベル付きターゲットデータのみにアクセス可能な実用的なドメイン適応(DA)セマンティックセマンティックセマンティクス問題について検討する。
ドメインギャップと2つのドメイン間のラベルシフトのため、擬似ラベル付きターゲットデータには、クローズドセットとオープンセットのラベルノイズが混在している。
DAセマンティックセグメンテーションにおける混合雑音分布をモデル化し、SimTの推定として問題を定式化するための単純なノイズ遷移行列(SimT)を提案する。
論文 参考訳(メタデータ) (2022-03-29T02:48:08Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - A Realistic Simulation Framework for Learning with Label Noise [17.14439597393087]
この枠組みは, ラベルノイズの重要な特徴を示す合成ノイズラベルを生成する。
また、ノイズの多いラベルで学習するための既存のアルゴリズムをベンチマークします。
本稿では、アノテータ機能を利用して雑音ラベルの予測と修正を行う新しい手法であるラベル品質モデル(LQM)を提案する。
論文 参考訳(メタデータ) (2021-07-23T18:53:53Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - Approximating Instance-Dependent Noise via Instance-Confidence Embedding [87.65718705642819]
マルチクラス分類におけるラベルノイズは、学習システムの展開にとって大きな障害である。
インスタンス依存ノイズ(IDN)モデルを調査し、IDNの効率的な近似を提案し、インスタンス固有のラベル破損を捕捉する。
論文 参考訳(メタデータ) (2021-03-25T02:33:30Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。