DIPPER: Direct Preference Optimization to Accelerate Primitive-Enabled Hierarchical Reinforcement Learning
- URL: http://arxiv.org/abs/2406.10892v1
- Date: Sun, 16 Jun 2024 10:49:41 GMT
- Title: DIPPER: Direct Preference Optimization to Accelerate Primitive-Enabled Hierarchical Reinforcement Learning
- Authors: Utsav Singh, Souradip Chakraborty, Wesley A. Suttle, Brian M. Sadler, Vinay P Namboodiri, Amrit Singh Bedi,
- Abstract summary: We introduce DIPPER: Direct Preference Optimization to Accelerate Primitive-Enabled Hierarchical Reinforcement Learning.
It is an efficient hierarchical approach that leverages direct preference optimization to learn a higher-level policy and reinforcement learning to learn a lower-level policy.
It enjoys improved computational efficiency due to its use of direct preference optimization instead of standard preference-based approaches.
- Score: 36.50275602760051
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning control policies to perform complex robotics tasks from human preference data presents significant challenges. On the one hand, the complexity of such tasks typically requires learning policies to perform a variety of subtasks, then combining them to achieve the overall goal. At the same time, comprehensive, well-engineered reward functions are typically unavailable in such problems, while limited human preference data often is; making efficient use of such data to guide learning is therefore essential. Methods for learning to perform complex robotics tasks from human preference data must overcome both these challenges simultaneously. In this work, we introduce DIPPER: Direct Preference Optimization to Accelerate Primitive-Enabled Hierarchical Reinforcement Learning, an efficient hierarchical approach that leverages direct preference optimization to learn a higher-level policy and reinforcement learning to learn a lower-level policy. DIPPER enjoys improved computational efficiency due to its use of direct preference optimization instead of standard preference-based approaches such as reinforcement learning from human feedback, while it also mitigates the well-known hierarchical reinforcement learning issues of non-stationarity and infeasible subgoal generation due to our use of primitive-informed regularization inspired by a novel bi-level optimization formulation of the hierarchical reinforcement learning problem. To validate our approach, we perform extensive experimental analysis on a variety of challenging robotics tasks, demonstrating that DIPPER outperforms hierarchical and non-hierarchical baselines, while ameliorating the non-stationarity and infeasible subgoal generation issues of hierarchical reinforcement learning.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Multi-Agent Transfer Learning via Temporal Contrastive Learning [8.487274986507922]
This paper introduces a novel transfer learning framework for deep multi-agent reinforcement learning.
The approach automatically combines goal-conditioned policies with temporal contrastive learning to discover meaningful sub-goals.
arXiv Detail & Related papers (2024-06-03T14:42:14Z) - MENTOR: Guiding Hierarchical Reinforcement Learning with Human Feedback
and Dynamic Distance Constraint [40.3872201560003]
Hierarchical reinforcement learning (HRL) uses a hierarchical framework that divides tasks into subgoals and completes them sequentially.
Current methods struggle to find suitable subgoals for ensuring a stable learning process.
We propose a general hierarchical reinforcement learning framework incorporating human feedback and dynamic distance constraints.
arXiv Detail & Related papers (2024-02-22T03:11:09Z) - Simple Hierarchical Planning with Diffusion [54.48129192534653]
Diffusion-based generative methods have proven effective in modeling trajectories with offline datasets.
We introduce the Hierarchical diffuser, a fast, yet surprisingly effective planning method combining the advantages of hierarchical and diffusion-based planning.
Our model adopts a "jumpy" planning strategy at the higher level, which allows it to have a larger receptive field but at a lower computational cost.
arXiv Detail & Related papers (2024-01-05T05:28:40Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - CRISP: Curriculum Inducing Primitive Informed Subgoal Prediction for Hierarchical Reinforcement Learning [25.84621883831624]
We present CRISP, a novel HRL algorithm that generates a curriculum of achievable subgoals for evolving lower-level primitives.
CRISP uses the lower level primitive to periodically perform data relabeling on a handful of expert demonstrations.
We demonstrate that CRISP demonstrates impressive generalization in real world scenarios.
arXiv Detail & Related papers (2023-04-07T08:22:50Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - Human-Inspired Framework to Accelerate Reinforcement Learning [1.6317061277457001]
Reinforcement learning (RL) is crucial for data science decision-making but suffers from sample inefficiency.
This paper introduces a novel human-inspired framework to enhance RL algorithm sample efficiency.
arXiv Detail & Related papers (2023-02-28T13:15:04Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.