論文の概要: Bayesian Intervention Optimization for Causal Discovery
- arxiv url: http://arxiv.org/abs/2406.10917v1
- Date: Sun, 16 Jun 2024 12:45:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 20:02:29.327186
- Title: Bayesian Intervention Optimization for Causal Discovery
- Title(参考訳): 因果発見のためのベイズ干渉最適化
- Authors: Yuxuan Wang, Mingzhou Liu, Xinwei Sun, Wei Wang, Yizhou Wang,
- Abstract要約: 因果発見は複雑なシステムを理解し、決定を下すのに不可欠である。
ベイジアンやグラフ理論的なアプローチのような現在の手法は意思決定を優先しない。
ベイズ因子に着想を得た新しいベイズ最適化手法を提案する。
- 参考スコア(独自算出の注目度): 23.51328013481865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery is crucial for understanding complex systems and informing decisions. While observational data can uncover causal relationships under certain assumptions, it often falls short, making active interventions necessary. Current methods, such as Bayesian and graph-theoretical approaches, do not prioritize decision-making and often rely on ideal conditions or information gain, which is not directly related to hypothesis testing. We propose a novel Bayesian optimization-based method inspired by Bayes factors that aims to maximize the probability of obtaining decisive and correct evidence. Our approach uses observational data to estimate causal models under different hypotheses, evaluates potential interventions pre-experimentally, and iteratively updates priors to refine interventions. We demonstrate the effectiveness of our method through various experiments. Our contributions provide a robust framework for efficient causal discovery through active interventions, enhancing the practical application of theoretical advancements.
- Abstract(参考訳): 因果発見は複雑なシステムを理解し、決定を下すのに不可欠である。
観測データは特定の仮定の下で因果関係を明らかにすることができるが、しばしば失敗し、積極的な介入が必要である。
ベイズ的手法やグラフ理論的手法のような現在の手法は意思決定を優先せず、しばしば仮説テストに直接関係しない理想的な条件や情報ゲインに依存している。
本稿では,ベイズ因子に着想を得たベイズ最適化手法を提案する。
提案手法は観測データを用いて,異なる仮説の下で因果モデルを推定し,事前実験により潜在的介入を評価する。
各種実験により本手法の有効性を実証した。
我々の貢献は、能動的介入による効果的な因果発見のための堅牢な枠組みを提供し、理論的な進歩の実践的応用を強化する。
関連論文リスト
- Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
介入データを含むデータセットは,データ分布に関する現実的な仮定の下で効果的に抽出可能であることを示す。
観察的および介入的設定における各変数の限界分布の比較に依拠する介入忠実性を導入する。
また、多数の単一変数の介入を含むデータセットから因果順序を推測するアルゴリズムであるIntersortを導入する。
論文 参考訳(メタデータ) (2024-05-28T16:07:17Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - Active Learning for Optimal Intervention Design in Causal Models [11.294389953686945]
本研究は、最適介入を特定するための因果的アクティブラーニング戦略を開発し、分布のインターベンショナル平均と所望の目標平均との相違によって測定した。
本研究では、Perturb-CITE-seq実験から得られた合成データと単細胞転写データの両方にアプローチを適用し、特定の細胞状態遷移を誘導する最適な摂動を同定する。
論文 参考訳(メタデータ) (2022-09-10T20:40:30Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDIは因果構造と介入の両方の潜在確率的表現の連続的な空間で機能する。
BaCaDIは、合成因果発見タスクとシミュレートされた遺伝子発現データの実験において、因果構造と介入ターゲットを識別する関連手法より優れている。
論文 参考訳(メタデータ) (2022-06-03T16:25:48Z) - Probability trees and the value of a single intervention [0.0]
我々は、単一の介入からの情報ゲインを定量化し、介入する前に期待される情報ゲインと介入から期待されるゲインの両方が単純な表現を持つことを示す。
これにより、期待される最も高い利得に対する介入を簡単に選択できるアクティブラーニング手法が実現される。
論文 参考訳(メタデータ) (2022-05-18T08:01:33Z) - A Survey on Causal Inference [64.45536158710014]
因果推論は統計学、コンピュータ科学、教育、公共政策、経済学など、多くの分野において重要な研究トピックである。
観測データに対する様々な因果効果推定法が誕生した。
論文 参考訳(メタデータ) (2020-02-05T21:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。