E-Bench: Towards Evaluating the Ease-of-Use of Large Language Models
- URL: http://arxiv.org/abs/2406.10950v1
- Date: Sun, 16 Jun 2024 14:08:30 GMT
- Title: E-Bench: Towards Evaluating the Ease-of-Use of Large Language Models
- Authors: Zhenyu Zhang, Bingguang Hao, Jinpeng Li, Zekai Zhang, Dongyan Zhao,
- Abstract summary: Large language models (LLMs) are sensitive to prompts, and another synonymous expression or a typo may lead to unexpected results for the model.
We evaluate the ease-of-use of LLMs and construct E-Bench, simulating the actual situation of human use.
- Score: 29.763745375790933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most large language models (LLMs) are sensitive to prompts, and another synonymous expression or a typo may lead to unexpected results for the model. Composing an optimal prompt for a specific demand lacks theoretical support and relies entirely on human experimentation, which poses a considerable obstacle to popularizing generative artificial intelligence. However, there is no systematic analysis of the stability of LLMs in resisting prompt perturbations in real-world scenarios. In this work, we propose to evaluate the ease-of-use of LLMs and construct E-Bench, simulating the actual situation of human use from synonymous perturbation (including paraphrasing, simplification, and colloquialism) and typographical perturbation (such as typing). On this basis, we also discuss the combination of these two types of perturbation and analyze the main reasons for performance degradation. Experimental results indicate that with the increase of model size, although the ease-of-use are significantly improved, there is still a long way to go to build a sufficiently user-friendly model.
Related papers
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.
LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.
LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models [51.99046112135311]
We introduce JustLogic, a synthetically generated deductive reasoning benchmark for rigorous evaluation of Large Language Models.
JustLogic is highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures.
Our experimental results reveal that most state-of-the-art (SOTA) LLMs perform significantly worse than the human average.
arXiv Detail & Related papers (2025-01-24T15:49:10Z) - Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
We cast the spotlight on the underexplored task of Natural Language Inference (NLI)
We validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation.
We research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models.
arXiv Detail & Related papers (2024-09-11T17:09:49Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
Performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts.
We introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries.
Experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance.
arXiv Detail & Related papers (2024-06-08T13:40:38Z) - Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models [13.532180752491954]
We demonstrate a dramatic breakdown of function and reasoning capabilities of state-of-the-art models trained at the largest available scales.
The breakdown is dramatic, as models show strong fluctuations across even slight problem variations that should not affect problem solving.
We take these initial observations to stimulate urgent re-assessment of the claimed capabilities of current generation of Large Language Models.
arXiv Detail & Related papers (2024-06-04T07:43:33Z) - SSCAE -- Semantic, Syntactic, and Context-aware natural language Adversarial Examples generator [0.44998333629984877]
Machine learning models are vulnerable to maliciously crafted Adversarial Examples (AEs)
This paper introduces a practical and efficient adversarial attack model called SSCAE for textbfSemantic, textbfSyntactic, and textbfContext-aware natural language textbfAEs generator.
arXiv Detail & Related papers (2024-03-18T14:45:20Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
We propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller task-oriented dialogue model.
This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models.
Our approach outperforms previous state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2023-06-16T13:04:56Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
We propose a complete framework for extending concept-based interpretability methods to NLP.
We optimize for features whose existence causes the output predictions to change substantially.
Our method achieves superior results on predictive impact, usability, and faithfulness compared to the baselines.
arXiv Detail & Related papers (2023-05-03T14:48:27Z) - Evaluating the Robustness of Neural Language Models to Input
Perturbations [7.064032374579076]
In this study, we design and implement various types of character-level and word-level perturbation methods to simulate noisy input texts.
We investigate the ability of high-performance language models such as BERT, XLNet, RoBERTa, and ELMo in handling different types of input perturbations.
The results suggest that language models are sensitive to input perturbations and their performance can decrease even when small changes are introduced.
arXiv Detail & Related papers (2021-08-27T12:31:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.