The landscape of ontologies in materials science and engineering: A survey and evaluation
- URL: http://arxiv.org/abs/2408.06034v1
- Date: Mon, 12 Aug 2024 09:53:58 GMT
- Title: The landscape of ontologies in materials science and engineering: A survey and evaluation
- Authors: Ebrahim Norouzi, Jörg Waitelonis, Harald Sack,
- Abstract summary: This paper provides an overview of an Ontology used in Materials Science and Engineering.
Sixty selected terms are analyzed and compared based on the requirements outlined in this paper.
Results provide valuable insights into the strengths and weaknesses of the investigated MSE.
- Score: 0.6472397166280683
- License:
- Abstract: Ontologies are widely used in materials science to describe experiments, processes, material properties, and experimental and computational workflows. Numerous online platforms are available for accessing and sharing ontologies in Materials Science and Engineering (MSE). Additionally, several surveys of these ontologies have been conducted. However, these studies often lack comprehensive analysis and quality control metrics. This paper provides an overview of ontologies used in Materials Science and Engineering to assist domain experts in selecting the most suitable ontology for a given purpose. Sixty selected ontologies are analyzed and compared based on the requirements outlined in this paper. Statistical data on ontology reuse and key metrics are also presented. The evaluation results provide valuable insights into the strengths and weaknesses of the investigated MSE ontologies. This enables domain experts to select suitable ontologies and to incorporate relevant terms from existing resources.
Related papers
- Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Application of Transformers based methods in Electronic Medical Records:
A Systematic Literature Review [77.34726150561087]
This work presents a systematic literature review of state-of-the-art advances using transformer-based methods on electronic medical records (EMRs) in different NLP tasks.
arXiv Detail & Related papers (2023-04-05T22:19:42Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Computer Vision Methods for the Microstructural Analysis of Materials:
The State-of-the-art and Future Perspectives [0.4595477728342621]
This review paper focuses on the state-of-the-art CNN-based techniques that have been applied to various multi-scale microstructural image analysis tasks.
We identify the main challenges with regard to the application of these methods to materials science research.
arXiv Detail & Related papers (2022-07-29T15:27:47Z) - Healthcare Knowledge Graph Construction: State-of-the-art, open issues,
and opportunities [5.652978777706895]
This paper is the first to provide a comprehensive taxonomy and a bird's eye view of healthcare KG construction.
A thorough examination of the current state-of-the-art techniques drawn from academic works relevant to various healthcare contexts is carried out.
Several research findings and existing issues in the literature are reported and discussed.
arXiv Detail & Related papers (2022-07-08T09:19:01Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Ontology-based Feature Selection: A Survey [0.6767885381740952]
Survey aims to provide insight into key aspects of knowledge extraction from text, images, databases and expertise.
presented examples span diverse application domains, e.g., medicine, tourism, mechanical and civil engineering.
arXiv Detail & Related papers (2021-04-15T19:03:31Z) - The CSO Classifier: Ontology-Driven Detection of Research Topics in
Scholarly Articles [0.0]
We present a new unsupervised approach for automatically classifying research papers according to the Computer Science Ontology (CSO)
The CSO takes as input the metadata associated with a research paper (title, abstract, keywords) and returns a selection of research concepts drawn from the ontology.
The approach was evaluated on a gold standard of manually annotated articles yielding a significant improvement over alternative methods.
arXiv Detail & Related papers (2021-04-02T09:02:32Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.