Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens
- URL: http://arxiv.org/abs/2406.10985v1
- Date: Sun, 16 Jun 2024 15:50:10 GMT
- Title: Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens
- Authors: Weiyao Luo, Suncong Zheng, Heming Xia, Weikang Wang, Yan Lei, Tianyu Liu, Shuang Chen, Zhifang Sui,
- Abstract summary: Transformer-based large language models (LLMs) suffer a performance degradation when modeling long-term contexts.
We propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks.
- Score: 21.61634020256455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk's information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk's semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach.
Related papers
- Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)
We find that fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy.
We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
Excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation.
We propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE)
DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer.
arXiv Detail & Related papers (2024-11-29T11:24:23Z) - CUTE: Measuring LLMs' Understanding of Their Tokens [54.70665106141121]
Large Language Models (LLMs) show remarkable performance on a wide variety of tasks.
This raises the question: To what extent can LLMs learn orthographic information?
We propose a new benchmark, which features a collection of tasks designed to test the orthographic knowledge of LLMs.
arXiv Detail & Related papers (2024-09-23T18:27:03Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
This research examines vocabulary trimming (VT) inspired by restricting embedding entries to the language of interest to bolster time and memory efficiency.
We apply two languages to trim the full vocabulary - Unicode-based script filtering and corpus-based selection - to different language families and sizes.
It is found that VT reduces the memory usage of small models by nearly 50% and has an upper bound of 25% improvement in generation speed.
arXiv Detail & Related papers (2023-11-16T09:35:50Z) - Pre-training LLMs using human-like development data corpus [3.5757761767474876]
We pre-train and evaluate Large Language Models (LLMs) on their ability to learn contextual word representations using roughly the same number of tokens as seen by children.
We provide a strong set of baselines; with different architectures, evaluation of changes in performance across epochs, and reported pre-training metrics for the strict small and strict tracks of the task.
arXiv Detail & Related papers (2023-11-08T13:13:23Z) - The first step is the hardest: Pitfalls of Representing and Tokenizing
Temporal Data for Large Language Models [10.414206635385632]
Large Language Models (LLMs) have demonstrated remarkable generalization across diverse tasks.
A notable obstacle emerges when feeding numerical/temporal data into these models, such as data sourced from wearables or electronic health records.
We discuss recent works that employ LLMs for human-centric tasks such as in mobile health sensing and present a case study showing that popular LLMs tokenize temporal data incorrectly.
arXiv Detail & Related papers (2023-09-12T13:51:29Z) - Masked and Permuted Implicit Context Learning for Scene Text Recognition [8.742571493814326]
Scene Recognition (STR) is difficult because of variations in text styles, shapes, and backgrounds.
We propose a masked and permuted implicit context learning network for STR, within a single decoder.
arXiv Detail & Related papers (2023-05-25T15:31:02Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.