The first step is the hardest: Pitfalls of Representing and Tokenizing
Temporal Data for Large Language Models
- URL: http://arxiv.org/abs/2309.06236v1
- Date: Tue, 12 Sep 2023 13:51:29 GMT
- Title: The first step is the hardest: Pitfalls of Representing and Tokenizing
Temporal Data for Large Language Models
- Authors: Dimitris Spathis, Fahim Kawsar
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable generalization across diverse tasks.
A notable obstacle emerges when feeding numerical/temporal data into these models, such as data sourced from wearables or electronic health records.
We discuss recent works that employ LLMs for human-centric tasks such as in mobile health sensing and present a case study showing that popular LLMs tokenize temporal data incorrectly.
- Score: 10.414206635385632
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable generalization
across diverse tasks, leading individuals to increasingly use them as personal
assistants and universal computing engines. Nevertheless, a notable obstacle
emerges when feeding numerical/temporal data into these models, such as data
sourced from wearables or electronic health records. LLMs employ tokenizers in
their input that break down text into smaller units. However, tokenizers are
not designed to represent numerical values and might struggle to understand
repetitive patterns and context, treating consecutive values as separate tokens
and disregarding their temporal relationships. Here, we discuss recent works
that employ LLMs for human-centric tasks such as in mobile health sensing and
present a case study showing that popular LLMs tokenize temporal data
incorrectly. To address that, we highlight potential solutions such as prompt
tuning with lightweight embedding layers as well as multimodal adapters, that
can help bridge this "modality gap". While the capability of language models to
generalize to other modalities with minimal or no finetuning is exciting, this
paper underscores the fact that their outputs cannot be meaningful if they
stumble over input nuances.
Related papers
- Scalable Representation Learning for Multimodal Tabular Transactions [14.18267117657451]
We present an innovative and scalable solution to these challenges.
We propose a parameter efficient decoder that interleaves transaction and text modalities.
We validate the efficacy of our solution on a large-scale dataset of synthetic payments transactions.
arXiv Detail & Related papers (2024-10-10T12:18:42Z) - Sparse Autoencoders Reveal Temporal Difference Learning in Large Language Models [7.115323364355489]
In-context learning, the ability to adapt based on a few examples in the input prompt, is a ubiquitous feature of large language models (LLMs)
We first show that Llama $3$ $70$B can solve simple RL problems in-context.
We then analyze the residual stream of Llama using Sparse Autoencoders (SAEs) and find representations that closely match temporal difference (TD) errors.
arXiv Detail & Related papers (2024-10-02T06:51:12Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
We introduce an extended concept of memorization, distributional memorization, which measures the correlation between the output probabilities and the pretraining data frequency.
This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks.
arXiv Detail & Related papers (2024-07-20T21:24:40Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens [21.61634020256455]
Transformer-based large language models (LLMs) suffer a performance degradation when modeling long-term contexts.
We propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks.
arXiv Detail & Related papers (2024-06-16T15:50:10Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Language Models Implement Simple Word2Vec-style Vector Arithmetic [32.2976613483151]
A primary criticism towards language models (LMs) is their inscrutability.
This paper presents evidence that, despite their size and complexity, LMs sometimes exploit a simple vector arithmetic style mechanism to solve some relational tasks.
arXiv Detail & Related papers (2023-05-25T15:04:01Z) - Augmented Language Models: a Survey [55.965967655575454]
This survey reviews works in which language models (LMs) are augmented with reasoning skills and the ability to use tools.
We refer to them as Augmented Language Models (ALMs)
The missing token objective allows ALMs to learn to reason, use tools, and even act, while still performing standard natural language tasks.
arXiv Detail & Related papers (2023-02-15T18:25:52Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.