HAIChart: Human and AI Paired Visualization System
- URL: http://arxiv.org/abs/2406.11033v2
- Date: Sat, 7 Sep 2024 13:36:39 GMT
- Title: HAIChart: Human and AI Paired Visualization System
- Authors: Yupeng Xie, Yuyu Luo, Guoliang Li, Nan Tang,
- Abstract summary: We present HAIChart, a reinforcement learning-based framework designed to recommend good visualizations for a given dataset by incorporating user feedback.
We propose a Monte Carlo Graph Search-based visualization generation algorithm paired with a composite reward function to efficiently explore the visualization space and automatically generate good visualizations.
We conduct both quantitative evaluations and user studies, showing that HAIChart significantly outperforms state-of-the-art human-powered tools (21% better at Recall and 1.8 times faster) and AI-powered automatic tools (25.1% and 14.9% better in terms of Hit@3 and R10@30, respectively).
- Score: 17.828527048327548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing importance of data visualization in business intelligence and data science emphasizes the need for tools that can efficiently generate meaningful visualizations from large datasets. Existing tools fall into two main categories: human-powered tools (e.g., Tableau and PowerBI), which require intensive expert involvement, and AI-powered automated tools (e.g., Draco and Table2Charts), which often fall short of guessing specific user needs. In this paper, we aim to achieve the best of both worlds. Our key idea is to initially auto-generate a set of high-quality visualizations to minimize manual effort, then refine this process iteratively with user feedback to more closely align with their needs. To this end, we present HAIChart, a reinforcement learning-based framework designed to iteratively recommend good visualizations for a given dataset by incorporating user feedback. Specifically, we propose a Monte Carlo Graph Search-based visualization generation algorithm paired with a composite reward function to efficiently explore the visualization space and automatically generate good visualizations. We devise a visualization hints mechanism to actively incorporate user feedback, thus progressively refining the visualization generation module. We further prove that the top-k visualization hints selection problem is NP-hard and design an efficient algorithm. We conduct both quantitative evaluations and user studies, showing that HAIChart significantly outperforms state-of-the-art human-powered tools (21% better at Recall and 1.8 times faster) and AI-powered automatic tools (25.1% and 14.9% better in terms of Hit@3 and R10@30, respectively).
Related papers
- RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning [63.599057862999]
RefChartQA is a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding.
Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%.
arXiv Detail & Related papers (2025-03-29T15:50:08Z) - An Automatic Graph Construction Framework based on Large Language Models for Recommendation [49.51799417575638]
We introduce AutoGraph, an automatic graph construction framework based on large language models for recommendation.
LLMs infer the user preference and item knowledge, which is encoded as semantic vectors.
Latent factors are incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics.
arXiv Detail & Related papers (2024-12-24T07:51:29Z) - ScaleViz: Scaling Visualization Recommendation Models on Large Data [5.673547920282187]
We propose a novel reinforcement-learning (RL) based framework that takes a given vis-rec model and a time-budget from the user.
We show the effectiveness of our technique in significantly reducing time-to visualize with very small amount of introduced error.
arXiv Detail & Related papers (2024-11-27T08:43:06Z) - ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity.
We develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations.
ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding.
arXiv Detail & Related papers (2024-11-26T14:29:47Z) - Charting the Future: Using Chart Question-Answering for Scalable Evaluation of LLM-Driven Data Visualizations [7.32619928577074]
We propose a novel framework that leverages Visual Question Answering (VQA) models to automate the evaluation of LLM-generated data visualizations.
Our results indicate that LLM-generated charts do not match the accuracy of the original non-LLM-generated charts based on VQA performance measures.
arXiv Detail & Related papers (2024-09-27T14:02:48Z) - SeeBel: Seeing is Believing [0.9790236766474201]
We propose three visualizations that enable users to compare dataset statistics and AI performance for segmenting all images.
Our project tries to further increase the interpretability of the trained AI model for segmentation by visualizing its image attention weights.
We propose to conduct surveys on real users to study the efficacy of our visualization tool in computer vision and AI domain.
arXiv Detail & Related papers (2023-12-18T05:11:00Z) - Towards Data-centric Graph Machine Learning: Review and Outlook [120.64417630324378]
We introduce a systematic framework, Data-centric Graph Machine Learning (DC-GML), that encompasses all stages of the graph data lifecycle.
A thorough taxonomy of each stage is presented to answer three critical graph-centric questions.
We pinpoint the future prospects of the DC-GML domain, providing insights to navigate its advancements and applications.
arXiv Detail & Related papers (2023-09-20T00:40:13Z) - Towards Efficient Visual Simplification of Computational Graphs in Deep
Neural Networks [16.79256014407765]
A computational graph in a deep neural network (DNN) denotes a specific data flow diagram (DFD) composed of many tensors and operators.
Existing toolkits for visualizing computational graphs are not applicable when the structure is highly complicated and large-scale.
We propose a suite of visual simplification techniques, including a cycle-removing method, a module-based edge-pruning algorithm, and an isomorphic subgraph stacking strategy.
arXiv Detail & Related papers (2022-12-21T05:17:13Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
Self-Supervised Hypergraph Transformer (SHT)
Self-Supervised Hypergraph Transformer (SHT)
Cross-view generative self-supervised learning component is proposed for data augmentation over the user-item interaction graph.
arXiv Detail & Related papers (2022-07-28T18:40:30Z) - Active Learning with Pseudo-Labels for Multi-View 3D Pose Estimation [18.768030475943213]
We improve Active Learning for the problem of 3D pose estimation in a multi-view setting.
We develop a framework that allows us to efficiently extend existing single-view AL strategies.
We demonstrate additional performance gains by incorporating predicted pseudo-labels, which is a form of self-training.
arXiv Detail & Related papers (2021-12-27T14:34:25Z) - Graph Contrastive Learning Automated [94.41860307845812]
Graph contrastive learning (GraphCL) has emerged with promising representation learning performance.
The effectiveness of GraphCL hinges on ad-hoc data augmentations, which have to be manually picked per dataset.
This paper proposes a unified bi-level optimization framework to automatically, adaptively and dynamically select data augmentations when performing GraphCL on specific graph data.
arXiv Detail & Related papers (2021-06-10T16:35:27Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
Scene graph models usually require supervised learning on large quantities of labeled data with intensive human annotation.
We propose visual distant supervision, a novel paradigm of visual relation learning, which can train scene graph models without any human-labeled data.
Comprehensive experimental results show that our distantly supervised model outperforms strong weakly supervised and semi-supervised baselines.
arXiv Detail & Related papers (2021-03-29T06:35:24Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.