論文の概要: Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment
- arxiv url: http://arxiv.org/abs/2406.11039v1
- Date: Sun, 16 Jun 2024 18:37:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 19:13:27.069103
- Title: Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment
- Title(参考訳): 動的ノルマティビティ:価値アライメントに必要な必要十分条件
- Authors: Nicholas Kluge Corrêa,
- Abstract要約: 我々は,人的目標と価値を人工システムで従うことができるような方法で表現する上での課題に,不必要な敵意を伴わない「調整」の問題を見出した。
この研究は、AIシステム開発に規範的理論をもたらす、しっかりとした哲学的基礎と実践的な実装を必要とする技術的哲学的問題としてのアライメントに対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The critical inquiry pervading the realm of Philosophy, and perhaps extending its influence across all Humanities disciplines, revolves around the intricacies of morality and normativity. Surprisingly, in recent years, this thematic thread has woven its way into an unexpected domain, one not conventionally associated with pondering "what ought to be": the field of artificial intelligence (AI) research. Central to morality and AI, we find "alignment", a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects. More explicitly and with our current paradigm of AI development in mind, we can think of alignment as teaching human values to non-anthropomorphic entities trained through opaque, gradient-based learning techniques. This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development. To accomplish this, we propose two sets of necessary and sufficient conditions that, we argue, should be considered in any alignment process. While necessary conditions serve as metaphysical and metaethical roots that pertain to the permissibility of alignment, sufficient conditions establish a blueprint for aligning AI systems under a learning-based paradigm. After laying such foundations, we present implementations of this approach by using state-of-the-art techniques and methods for aligning general-purpose language systems. We call this framework Dynamic Normativity. Its central thesis is that any alignment process under a learning paradigm that cannot fulfill its necessary and sufficient conditions will fail in producing aligned systems.
- Abstract(参考訳): 哲学の領域に及ぼし、おそらくすべてのヒューマニティの分野にその影響力を及ぼす批判的な調査は、道徳と規範の複雑さを中心に展開している。
驚くべきことに、近年では、このテーマの糸が予期せぬ領域へと織り込まれている。
道徳とAIの中心にあるのは、人間の目標と価値を表現するという課題に関連する問題である「アライメント(alignment)」です。
より明確に、そして現在のAI開発のパラダイムを念頭に置いて、アライメントは、不透明で勾配に基づく学習技術によって訓練された非人為的エンティティに人間の価値を教えるものだと考えることができます。
この研究は、AIシステム開発に規範的理論をもたらす、しっかりとした哲学的基礎と実践的な実装を必要とする技術的哲学的問題としてのアライメントに対処する。
これを実現するために、我々は、任意のアライメントプロセスにおいて考慮すべき必要かつ十分な条件を2つ提案する。
必要な条件は、アライメントの許容性に関連するメタ物理的およびメタ倫理的ルーツとして機能するが、十分な条件は、学習に基づくパラダイムの下でAIシステムを調整するための青写真を確立する。
このような基礎を築き上げた後、我々は、汎用言語システムの整合化のための最先端技術と手法を用いて、このアプローチの実装を提案する。
このフレームワークをDynamic Normativityと呼びます。
その中心的な主張は、必要な十分な条件を満たせない学習パラダイムの下でのアライメントプロセスは、アライメントシステムの生成に失敗する、というものである。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Beyond Preferences in AI Alignment [15.878773061188516]
我々は、AIアライメントに対する優先主義的アプローチを特徴づけ、挑戦する。
人間の価値観の濃厚なセマンティックな内容が、嗜好がどのように捉えられていないかを示す。
我々は、AIシステムは、彼らの社会的役割に適した規範的基準に適合すべきであると主張する。
論文 参考訳(メタデータ) (2024-08-30T03:14:20Z) - The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems [0.0]
AI倫理の原則と実践の間にはまだギャップがある。
AI倫理を運用しようとする組織が直面する大きな障害のひとつは、明確に定義された材料スコープの欠如である。
論文 参考訳(メタデータ) (2024-07-07T12:16:01Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Learning Machine Morality through Experience and Interaction [3.7414804164475983]
次世代人工知能(AI)システムの安全性確保への関心が高まっているため、自律エージェントに道徳を埋め込む新しいアプローチが求められている。
我々は、適応可能で堅牢だが、より制御可能で解釈可能なエージェントを作成するために、よりハイブリッドなソリューションが必要であると論じている。
論文 参考訳(メタデータ) (2023-12-04T11:46:34Z) - Foundational Moral Values for AI Alignment [0.0]
我々は、道徳哲学から引き出された5つの基本的価値観を提示し、生存、持続的世代間存在、社会、教育、真実という人間の生存に必要なものの上に構築する。
これらの価値は、技術的アライメント作業のためのより明確な方向を提供するだけでなく、これらの価値を取得し、維持するためのAIシステムからの脅威と機会を強調するためのフレームワークとしても役立ちます。
論文 参考訳(メタデータ) (2023-11-28T18:11:24Z) - AI Alignment: A Comprehensive Survey [70.35693485015659]
AIアライメントは、AIシステムが人間の意図や価値観に沿って振る舞うようにすることを目的としている。
AIアライメントの重要な目的として、ロバストネス、解釈可能性、制御可能性、倫理という4つの原則を特定します。
我々は、現在のアライメント研究を、前方アライメントと後方アライメントの2つの重要なコンポーネントに分解する。
論文 参考訳(メタデータ) (2023-10-30T15:52:15Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。