論文の概要: Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation
- arxiv url: http://arxiv.org/abs/2207.01510v1
- Date: Wed, 8 Jun 2022 12:32:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 09:40:25.140428
- Title: Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation
- Title(参考訳): 欧州価値との合意の公正性:AI規制の学際的視点
- Authors: Alejandra Bringas Colmenarejo, Luca Nannini, Alisa Rieger, Kristen M.
Scott, Xuan Zhao, Gourab K. Patro, Gjergji Kasneci, Katharina Kinder-Kurlanda
- Abstract要約: この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
- 参考スコア(独自算出の注目度): 61.77881142275982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With increasing digitalization, Artificial Intelligence (AI) is becoming
ubiquitous. AI-based systems to identify, optimize, automate, and scale
solutions to complex economic and societal problems are being proposed and
implemented. This has motivated regulation efforts, including the Proposal of
an EU AI Act. This interdisciplinary position paper considers various concerns
surrounding fairness and discrimination in AI, and discusses how AI regulations
address them, focusing on (but not limited to) the Proposal. We first look at
AI and fairness through the lenses of law, (AI) industry, sociotechnology, and
(moral) philosophy, and present various perspectives. Then, we map these
perspectives along three axes of interests: (i) Standardization vs.
Localization, (ii) Utilitarianism vs. Egalitarianism, and (iii) Consequential
vs. Deontological ethics which leads us to identify a pattern of common
arguments and tensions between these axes. Positioning the discussion within
the axes of interest and with a focus on reconciling the key tensions, we
identify and propose the roles AI Regulation should take to make the endeavor
of the AI Act a success in terms of AI fairness concerns.
- Abstract(参考訳): デジタル化が進むにつれ、人工知能(AI)はユビキタスになりつつある。
複雑な経済・社会問題に対するソリューションを特定し、最適化し、自動化し、スケールするAIベースのシステムが提案され、実装されている。
これはEUのAI法の提案を含む規制の取り組みを動機付けている。
本論文は,aiにおける公平性と差別に関する様々な懸念を考察し,ai規制がどのように対処するかを論じる。
まず、法、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
そして、これらの視点を3つの関心軸に沿ってマッピングします。
(i)標準化対ローカライゼーション
(ii)功利主義対平等主義、及び
(iii)これらの軸間の共通する議論と緊張のパターンを特定することにつながる対ドントロジー倫理(英語版)
関心の軸に議論を配置し、重要な緊張を和らげることに集中して、AI規制がAI公正性の懸念の観点からAI法の取り組みを成功させる役割を特定し、提案する。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Beneficent Intelligence: A Capability Approach to Modeling Benefit,
Assistance, and Associated Moral Failures through AI Systems [12.239090962956043]
AI倫理に関する一般的な言説は、AIシステムが個人と対話する際に生じる多様な倫理的懸念を捉えるのに必要な言語や形式主義を欠いている。
本稿では、利害関係者に有意義な利益や援助を与えるために、AIシステムに必要な倫理的概念と権利のネットワークを定式化する枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-01T22:38:14Z) - Connecting the Dots in Trustworthy Artificial Intelligence: From AI
Principles, Ethics, and Key Requirements to Responsible AI Systems and
Regulation [22.921683578188645]
私たちは、真に信頼できるAIを達成することは、システムのライフサイクルの一部であるすべてのプロセスとアクターの信頼性を懸念する、と論じています。
AIベースのシステムの倫理的利用と開発のためのグローバルな原則、AI倫理に対する哲学的な見解、AI規制に対するリスクベースのアプローチである。
信頼できるAIに関する私たちの学際的なビジョンは、最近発表されたAIの未来に関するさまざまな見解に関する議論で頂点に達した。
論文 参考訳(メタデータ) (2023-05-02T09:49:53Z) - Artificial intelligence in government: Concepts, standards, and a
unified framework [0.0]
人工知能(AI)の最近の進歩は、政府の変革を約束している。
新しいAIシステムは、社会の規範的な期待に沿うように振る舞うことが重要である。
論文 参考訳(メタデータ) (2022-10-31T10:57:20Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Artificial Intelligence, Values and Alignment [2.28438857884398]
AIアライメント問題の規範的および技術的側面は相互に関連している。
アライメントの目標を明確にすることが重要です。
理論家にとっての中心的な課題は、AIの「真の」道徳原則を特定することではない。
論文 参考訳(メタデータ) (2020-01-13T10:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。