論文の概要: Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data
- arxiv url: http://arxiv.org/abs/2406.11046v1
- Date: Sun, 16 Jun 2024 19:11:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 19:13:27.060321
- Title: Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data
- Title(参考訳): ChatGPTがソフトウェア開発に与える影響:GitHubデータを用いた差分推定の相違
- Authors: Alexander Quispe, Rodrigo Grijalba,
- Abstract要約: ChatGPTは、ソフトウェア生産効率を向上させるAIツールである。
10万人あたりのgitプッシュ数、リポジトリ数、ユニークな開発者数に対するChatGPTの影響を見積もっています。
これらの結果は、ChatGPTのようなAIツールが開発者の生産性を大幅に向上させる可能性があることを示唆している。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in Artificial Intelligence, particularly with ChatGPT, have significantly impacted software development. Utilizing novel data from GitHub Innovation Graph, we hypothesize that ChatGPT enhances software production efficiency. Utilizing natural experiments where some governments banned ChatGPT, we employ Difference-in-Differences (DID), Synthetic Control (SC), and Synthetic Difference-in-Differences (SDID) methods to estimate its effects. Our findings indicate a significant positive impact on the number of git pushes, repositories, and unique developers per 100,000 people, particularly for high-level, general purpose, and shell scripting languages. These results suggest that AI tools like ChatGPT can substantially boost developer productivity, though further analysis is needed to address potential downsides such as low quality code and privacy concerns.
- Abstract(参考訳): 人工知能の進歩、特にChatGPTは、ソフトウェア開発に大きな影響を与えている。
GitHub Innovation Graphの新たなデータを活用することで、ChatGPTがソフトウェア生産効率を向上させる、という仮説を立てています。
いくつかの政府がChatGPTを禁止した自然実験を利用して、差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分
我々の調査結果は、特に高レベル、汎用、シェルスクリプティング言語において、10万人あたりのgitプッシュ、リポジトリ、およびユニークな開発者数に大きな影響を与えることを示唆している。
これらの結果は、ChatGPTのようなAIツールが開発者の生産性を大幅に向上させる可能性があることを示唆している。
関連論文リスト
- Benchmarking ChatGPT, Codeium, and GitHub Copilot: A Comparative Study of AI-Driven Programming and Debugging Assistants [0.0]
コード生成やバグ修正、最適化といったタスクには、大きな言語モデル(LLM)が不可欠になっています。
本稿では、ChatGPT、Codeium、GitHub Copilotの比較研究を行い、LeetCode問題におけるパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-09-30T03:53:40Z) - You Augment Me: Exploring ChatGPT-based Data Augmentation for Semantic Code Search [47.54163552754051]
コード検索はソフトウェア開発において重要な役割を担い、開発者は自然言語クエリを使ってコードを検索し再利用することができる。
近年,大規模言語モデル (LLM) は自然言語の理解と生成において顕著な進歩を遂げている。
本稿では,大規模言語モデルによって生成された高品質で多様な拡張データを利用する新しいアプローチChatDANCEを提案する。
論文 参考訳(メタデータ) (2024-08-10T12:51:21Z) - ChatGPT as a Software Development Bot: A Project-based Study [5.518217604591736]
本研究では,生成型AIツール,特にChatGPTが大学生のソフトウェア開発経験に与える影響について検討した。
その結果,ChatGPTはソフトウェア開発教育におけるスキルギャップに大きく対処し,効率性,正確性,協調性を向上した。
論文 参考訳(メタデータ) (2023-10-20T16:48:19Z) - ChatGPT for Vulnerability Detection, Classification, and Repair: How Far
Are We? [24.61869093475626]
ChatGPTのような大規模言語モデル(LLM)は、様々なソフトウェアエンジニアリングタスクにおいて顕著な進歩を見せた。
ソフトウェア脆弱性のために設計された最先端言語モデルとChatGPTを比較した。
ChatGPTは限られたパフォーマンスを実現し、脆弱性コンテキストにおける他の言語モデルよりも大幅に遅れていることがわかった。
論文 参考訳(メタデータ) (2023-10-15T12:01:35Z) - Using ChatGPT as a Static Application Security Testing Tool [0.0]
ChatGPTはその素晴らしいパフォーマンスで大きな注目を集めています。
我々は,Python ソースコードの脆弱性検出に ChatGPT を用いることの可能性を検討した。
論文 参考訳(メタデータ) (2023-08-28T09:21:37Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
本稿では,ChatGPTのようなソフトウェア技術者やAIシステムのパフォーマンスを,さまざまな評価指標で比較した実証的研究を行う。
この論文は、さまざまな評価基準を考慮して、ソフトウェアエンジニアとAIベースのソリューションの包括的な比較が、人間と機械のコラボレーションを促進する上で重要であることを示唆している。
論文 参考訳(メタデータ) (2023-05-19T17:25:54Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
臨床テキストマイニングにおけるOpenAIのChatGPTの可能性を検討する。
本稿では,高品質な合成データを大量に生成する新たな学習パラダイムを提案する。
提案手法により,下流タスクの性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-03-08T03:56:31Z) - AugGPT: Leveraging ChatGPT for Text Data Augmentation [59.76140039943385]
本稿では,ChatGPT(AugGPT)に基づくテキストデータ拡張手法を提案する。
AugGPTはトレーニングサンプルの各文を、概念的には似ているが意味的に異なる複数のサンプルに言い換える。
数ショットの学習テキスト分類タスクの実験結果は、提案したAugGPTアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2023-02-25T06:58:16Z) - A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on
Reasoning, Hallucination, and Interactivity [79.12003701981092]
8種類の共通NLPアプリケーションタスクをカバーする23のデータセットを用いてChatGPTの広範な技術的評価を行う。
これらのデータセットと、新たに設計されたマルチモーダルデータセットに基づいて、ChatGPTのマルチタスク、マルチリンガル、マルチモーダルの側面を評価する。
ChatGPTの精度は平均63.41%で、論理的推論、非テキスト的推論、コモンセンス推論の10の異なる推論カテゴリで正確である。
論文 参考訳(メタデータ) (2023-02-08T12:35:34Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
RGB + 深度カメラのような追加のセンサー入力によるポリシーの強化は、ロボットの知覚能力を改善するための簡単なアプローチである。
畳み込みニューラルネットワークを正規化するために変分情報ボトルネックを用いることで、保持領域への一般化が向上することを示す。
提案手法は, シミュレーションと現実のギャップを埋めることと, RGBと奥行き変調をうまく融合できることを実証する。
論文 参考訳(メタデータ) (2022-02-15T17:38:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。