Can Machines Resonate with Humans? Evaluating the Emotional and Empathic Comprehension of LMs
- URL: http://arxiv.org/abs/2406.11250v2
- Date: Thu, 31 Oct 2024 04:40:26 GMT
- Title: Can Machines Resonate with Humans? Evaluating the Emotional and Empathic Comprehension of LMs
- Authors: Muhammad Arslan Manzoor, Yuxia Wang, Minghan Wang, Preslav Nakov,
- Abstract summary: We propose several strategies to improve empathy understanding in language models.
A low agreement among annotators hinders training and highlights the subjective nature of the task.
To study this, we meticulously collected story pairs in Urdu language and find that subjectivity in interpreting empathy among annotators appears to be independent of cultural background.
- Score: 31.556095945149583
- License:
- Abstract: Empathy plays a pivotal role in fostering prosocial behavior, often triggered by the sharing of personal experiences through narratives. However, modeling empathy using NLP approaches remains challenging due to its deep interconnection with human interaction dynamics. Previous approaches, which involve fine-tuning language models (LMs) on human-annotated empathic datasets, have had limited success. In our pursuit of improving empathy understanding in LMs, we propose several strategies, including contrastive learning with masked LMs and supervised fine-tuning with large language models. While these methods show improvements over previous methods, the overall results remain unsatisfactory. To better understand this trend, we performed an analysis which reveals a low agreement among annotators. This lack of consensus hinders training and highlights the subjective nature of the task. We also explore the cultural impact on annotations. To study this, we meticulously collected story pairs in Urdu language and find that subjectivity in interpreting empathy among annotators appears to be independent of cultural background. Our systematic exploration of LMs' understanding of empathy reveals substantial opportunities for further investigation in both task formulation and modeling.
Related papers
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Cause-Aware Empathetic Response Generation via Chain-of-Thought Fine-Tuning [12.766893968788263]
Empathetic response generation endows agents with the capability to comprehend dialogue contexts and react to expressed emotions.
Previous works predominantly focus on leveraging the speaker's emotional labels, but ignore the importance of emotion cause reasoning.
We propose a cause-aware empathetic generation approach by integrating emotions and causes through a well-designed Chain-of-Thought prompt.
arXiv Detail & Related papers (2024-08-21T13:11:03Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
We study how reliance is affected by contextual features of an interaction.
We find that contextual characteristics significantly affect human reliance behavior.
Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions.
arXiv Detail & Related papers (2024-07-10T18:00:05Z) - Modeling Emotions and Ethics with Large Language Models [2.5200794639628032]
We first model eight fundamental human emotions, presented as opposing pairs, and employ collaborative LLMs to reinterpret and express these emotions.
Our focus extends to embedding a latent ethical dimension within LLMs, guided by a novel self-supervised learning algorithm with human feedback.
arXiv Detail & Related papers (2024-04-15T05:30:26Z) - Multi-dimensional Evaluation of Empathetic Dialog Responses [4.580983642743026]
We propose a multi-dimensional empathy evaluation framework to measure both emphexpressed intents from the speaker's perspective and emphperceived empathy from the listener's perspective.
We find the two dimensions are inter-connected, while perceived empathy has high correlations with dialogue satisfaction levels.
arXiv Detail & Related papers (2024-02-18T00:32:33Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
arXiv Detail & Related papers (2023-08-17T10:49:18Z) - Context Limitations Make Neural Language Models More Human-Like [32.488137777336036]
We show discrepancies in context access between modern neural language models (LMs) and humans in incremental sentence processing.
Additional context limitation was needed to make LMs better simulate human reading behavior.
Our analyses also showed that human-LM gaps in memory access are associated with specific syntactic constructions.
arXiv Detail & Related papers (2022-05-23T17:01:13Z) - Affect-DML: Context-Aware One-Shot Recognition of Human Affect using
Deep Metric Learning [29.262204241732565]
Existing methods assume that all emotions-of-interest are given a priori as annotated training examples.
We conceptualize one-shot recognition of emotions in context -- a new problem aimed at recognizing human affect states in finer particle level from a single support sample.
All variants of our model clearly outperform the random baseline, while leveraging the semantic scene context consistently improves the learnt representations.
arXiv Detail & Related papers (2021-11-30T10:35:20Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
We propose an approach that relies on exemplars to cue the generative model on fine stylistic properties that signal empathy to the interlocutor.
We empirically show that these approaches yield significant improvements in empathetic response quality in terms of both automated and human-evaluated metrics.
arXiv Detail & Related papers (2021-06-22T14:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.