論文の概要: YOLO9tr: A Lightweight Model for Pavement Damage Detection Utilizing a Generalized Efficient Layer Aggregation Network and Attention Mechanism
- arxiv url: http://arxiv.org/abs/2406.11254v2
- Date: Tue, 18 Jun 2024 09:30:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 11:51:14.562613
- Title: YOLO9tr: A Lightweight Model for Pavement Damage Detection Utilizing a Generalized Efficient Layer Aggregation Network and Attention Mechanism
- Title(参考訳): YOLO9tr: 一般化された高効率層凝集ネットワークと注意機構を利用した舗装損傷検出軽量モデル
- Authors: Sompote Youwai, Achitaphon Chaiyaphat, Pawarotorn Chaipetch,
- Abstract要約: 本稿では,舗装損傷検出のための軽量物体検出モデルYOLO9trを提案する。
YOLO9trはYOLOv9アーキテクチャに基づいており、機能抽出とアテンション機構を強化する部分的なアテンションブロックを備えている。
このモデルは、最大136FPSのフレームレートを実現し、ビデオ監視や自動検査システムなどのリアルタイムアプリケーションに適合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maintaining road pavement integrity is crucial for ensuring safe and efficient transportation. Conventional methods for assessing pavement condition are often laborious and susceptible to human error. This paper proposes YOLO9tr, a novel lightweight object detection model for pavement damage detection, leveraging the advancements of deep learning. YOLO9tr is based on the YOLOv9 architecture, incorporating a partial attention block that enhances feature extraction and attention mechanisms, leading to improved detection performance in complex scenarios. The model is trained on a comprehensive dataset comprising road damage images from multiple countries, including an expanded set of damage categories beyond the standard four. This broadened classification range allows for a more accurate and realistic assessment of pavement conditions. Comparative analysis demonstrates YOLO9tr's superior precision and inference speed compared to state-of-the-art models like YOLO8, YOLO9 and YOLO10, achieving a balance between computational efficiency and detection accuracy. The model achieves a high frame rate of up to 136 FPS, making it suitable for real-time applications such as video surveillance and automated inspection systems. The research presents an ablation study to analyze the impact of architectural modifications and hyperparameter variations on model performance, further validating the effectiveness of the partial attention block. The results highlight YOLO9tr's potential for practical deployment in real-time pavement condition monitoring, contributing to the development of robust and efficient solutions for maintaining safe and functional road infrastructure.
- Abstract(参考訳): 道路舗装の整合性を維持することは安全かつ効率的な交通の確保に不可欠である。
従来の舗装条件の評価方法は、しばしば手間がかかり、人間の誤りに影響を受けやすい。
本稿では,舗装損傷検出のための軽量物体検出モデルであるYOLO9trを提案する。
YOLO9trはYOLOv9アーキテクチャをベースにしており、機能抽出とアテンション機構を強化する部分的なアテンションブロックが組み込まれており、複雑なシナリオにおける検出性能が改善されている。
本モデルは,複数の国の道路被害画像からなる包括的データセットに基づいて訓練され,標準4以上の被害カテゴリが拡張されている。
この拡張された分類範囲は、舗装条件のより正確で現実的な評価を可能にする。
比較分析では、YOLO8、YOLO9、YOLO10のような最先端のモデルと比較して、YOLO9trの精度と推論速度が優れており、計算効率と検出精度のバランスが取れている。
このモデルは、最大136FPSのフレームレートを実現し、ビデオ監視や自動検査システムなどのリアルタイムアプリケーションに適合する。
本研究は,設計変更とハイパーパラメータ変動がモデル性能に及ぼす影響を解析し,部分的注意ブロックの有効性を検証するためのアブレーション研究である。
その結果, リアルタイム舗装環境モニタリングにおけるYOLO9trの実用的展開の可能性を強調し, 安全かつ機能的な道路インフラを維持するための堅牢で効率的なソリューションの開発に寄与した。
関連論文リスト
- Research on target detection method of distracted driving behavior based on improved YOLOv8 [6.405098280736171]
本研究では,BOTNetモジュール,GAMアテンション機構,EIoU損失関数を統合することで,従来のYOLOv8モデルに基づく改良されたYOLOv8検出手法を提案する。
実験の結果, 精度は99.4%であり, 検出速度, 精度ともに良好であった。
論文 参考訳(メタデータ) (2024-07-02T00:43:41Z) - Cycle-YOLO: A Efficient and Robust Framework for Pavement Damage Detection [13.221462950649467]
本稿では,CycleGANと改良YOLOv5アルゴリズムを用いた舗装損傷検出手法を提案する。
本アルゴリズムは, 3種類の舗装損傷(き裂, 穴, パッチ)を検出する場合, 0.872, 0.854, 平均精度@0.5, 0.882, 平均精度@0.5を達成した。
論文 参考訳(メタデータ) (2024-05-28T07:27:42Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - YOLOv8-Based Visual Detection of Road Hazards: Potholes, Sewer Covers,
and Manholes [0.0]
本研究は,道路危険度検出の文脈において,対象物検出モデルであるYOLOv8の総合評価を行う。
従来の YOLOv5 と YOLOv7 の比較分析を行い、様々なアプリケーションにおける計算効率の重要性を強調した。
この研究は、様々なテストシナリオで計算されたmAPスコアを用いて、モデルの堅牢性と一般化能力を評価する。
論文 参考訳(メタデータ) (2023-10-31T18:33:26Z) - MFL-YOLO: An Object Detection Model for Damaged Traffic Signs [0.32634122554914]
我々は、MFL-YOLO(Mutual Feature Levels Loss enhanced YOLO)という、YOLOv5sに基づく改善されたオブジェクト検出手法を提案する。
YOLOv5sと比較して、MFL-YOLOはF1スコアとmAPの4.3と5.1を改善し、FLOPsを8.9%削減しました。
Grad-CAM熱マップの可視化は、我々のモデルが損傷した交通標識の局所的な詳細に集中できることを示している。
論文 参考訳(メタデータ) (2023-09-13T06:46:27Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
現在の最先端ディープラーニング(DL)に基づく損傷検出モデルは、複雑でノイズの多い環境では優れた特徴抽出能力を欠いていることが多い。
DenseSPH-YOLOv5は、DenseNetブロックをバックボーンに統合したリアルタイムDLベースの高性能損傷検出モデルである。
DenseSPH-YOLOv5は平均平均精度(mAP)が85.25%、F1スコアが81.18%、精度(P)が89.51%である。
論文 参考訳(メタデータ) (2023-03-07T22:53:36Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。