論文の概要: Mitigating Large Language Model Hallucination with Faithful Finetuning
- arxiv url: http://arxiv.org/abs/2406.11267v1
- Date: Mon, 17 Jun 2024 07:16:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 17:54:42.306857
- Title: Mitigating Large Language Model Hallucination with Faithful Finetuning
- Title(参考訳): 忠実なファインタニングによる大規模言語モデル幻覚の緩和
- Authors: Minda Hu, Bowei He, Yufei Wang, Liangyou Li, Chen Ma, Irwin King,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
彼らは「幻覚」として知られる、流動的で不合理な反応を生み出す傾向にある
- 参考スコア(独自算出の注目度): 46.33663932554782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable performance on various natural language processing tasks. However, they are prone to generating fluent yet untruthful responses, known as "hallucinations". Hallucinations can lead to the spread of misinformation and cause harm in critical applications. Mitigating hallucinations is challenging as they arise from factors such as noisy data, model overconfidence, lack of knowledge, and the generation process itself. Recent efforts have attempted to address this issue through representation editing and decoding algorithms, reducing hallucinations without major structural changes or retraining. However, these approaches either implicitly edit LLMs' behavior in latent space or suppress the tendency to output unfaithful results during decoding instead of explicitly modeling on hallucination. In this work, we introduce Faithful Finetuning (F2), a novel method that explicitly models the process of faithful question answering through carefully designed loss functions during fine-tuning. We conduct extensive experiments on popular datasets and demonstrate that F2 achieves significant improvements over vanilla models and baselines.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
しかし、それらは「幻覚(hallucinations)」として知られる、流動的で不合理な反応を引き起こす傾向にある。
幻覚は誤報の拡散を招き、重要な応用に害をもたらす可能性がある。
ノイズの多いデータ、モデルの過信、知識の欠如、生成プロセス自体などの要因から幻覚を緩和することは困難である。
近年の取り組みは、表現編集と復号化アルゴリズムによってこの問題に対処し、大きな構造変化や再訓練なしに幻覚を減らそうとしている。
しかしながら、これらのアプローチは、潜在空間におけるLCMの振る舞いを暗黙的に編集するか、幻覚を明示的にモデル化するのではなく、復号中に不誠実な結果を出力する傾向を抑えるかのいずれかである。
本研究では、ファインタニング中に慎重に設計された損失関数を通して、忠実な質問応答の過程を明示的にモデル化する新しい手法である、F2(Fhithful Finetuning)を紹介する。
一般的なデータセットに関する広範な実験を行い、F2がバニラモデルやベースラインよりも大幅に改善されていることを示す。
関連論文リスト
- VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
LVLM(Large Vision-Language Models)はマルチモーダルタスク推論において優れた性能を示す。
textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfDecoding (VaLiD)。
論文 参考訳(メタデータ) (2024-11-24T13:42:02Z) - Distinguishing Ignorance from Error in LLM Hallucinations [43.62904897907926]
我々は,2種類の幻覚の区別について,これまでの研究が完全には対応していない,クローズブック質問回答(CBQA)に焦点を当てた。
これらの症例の鑑別は幻覚の検出と緩和に不可欠である。
論文 参考訳(メタデータ) (2024-10-29T14:31:33Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
大規模な言語モデルはファクトイドの質問に答えることに成功したが、幻覚を起こす傾向がある。
正しい解答知識を持つLLMの現象を推論力学の観点から検討する。
我々の研究は、LLMの幻覚が既知の事実について、そしてより重要なのは、幻覚を正確に予測する理由を理解することに光を当てた。
論文 参考訳(メタデータ) (2024-03-29T06:48:30Z) - Unfamiliar Finetuning Examples Control How Language Models Hallucinate [75.03210107477157]
大規模な言語モデルは、馴染みのないクエリに直面した時に幻覚化することが知られている。
モデルの微調整データの見慣れない例は、これらのエラーを形作るのに不可欠である。
本研究は,RLファインタニング戦略をさらに研究し,長大なモデル生成の現実性を改善することを目的とする。
論文 参考訳(メタデータ) (2024-03-08T18:28:13Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Reducing Hallucinations in Neural Machine Translation with Feature
Attribution [54.46113444757899]
本研究は,NMTにおける幻覚の軽減を目的としたモデル理解と正規化に着目したケーススタディである。
まず,幻覚を発生させるNMTモデルの振る舞いを研究するために,特徴帰属法を用いる。
次に、これらの手法を利用して、幻覚の低減に大きく貢献し、ゼロからモデルを再訓練する必要のない新しい損失関数を提案する。
論文 参考訳(メタデータ) (2022-11-17T20:33:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。