論文の概要: Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants
- arxiv url: http://arxiv.org/abs/2406.11301v3
- Date: Tue, 15 Oct 2024 23:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:40:19.098763
- Title: Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants
- Title(参考訳): ファイングラインドインストラクションバリアントによるインストラクションフォローの強化と評価
- Authors: Jiuding Yang, Weidong Guo, Kaitong Yang, Xiangyang Li, Yu Xu, Di Niu,
- Abstract要約: 複雑な命令を単純なサブコンポーネントに分解し、それらを修正し、それらを新しい変種に再構成する手法を導入する。
DeMoReconに基づくFGIVデータセットは,1,773個のシード命令の微粒化を含む。
以上の結果から,FGIVを微調整したLDMは,命令追従ベンチマークと一般的な命令追従ベンチマークの両方において,大幅な性能向上が期待できることがわかった。
- 参考スコア(独自算出の注目度): 28.691691883519542
- License:
- Abstract: The effective alignment of Large Language Models (LLMs) with precise instructions is essential for their application in diverse real-world scenarios. Current methods focus on enhancing the diversity and complexity of training and evaluation samples, yet they fall short in accurately assessing LLMs' ability to follow similar instruction variants. We introduce an effective data augmentation technique DeMoRecon that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants, thereby preserves the original instruction's context and complexity while introducing variability, which is critical for training and evaluating LLMs' instruction-following precision. Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions to both fine-tune and evaluate LLMs. Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
- Abstract(参考訳): 大きな言語モデル(LLM)と正確な命令との効果的なアライメントは、様々な現実世界のシナリオにおいて、それらの応用に不可欠である。
現在の手法は、トレーニングと評価サンプルの多様性と複雑さの向上に重点を置いているが、LLMが類似の命令変種に従う能力を正確に評価するには不十分である。
複雑な命令を単純なサブコンポーネントに分解し、それらを修正し、それらを新しい変種に再構成することで、可変性を導入しながら元の命令のコンテキストと複雑さを保ちながら、LLMの命令追従精度のトレーニングと評価に欠かせない、効果的なデータ拡張技術であるDeMoReconを導入する。
DeMoReconをベースとしたFGIVデータセットは,1,773個のシード命令を微調整し,LLMの評価を行う。
以上の結果から,FGIVを微調整したLDMは,命令追従ベンチマークと一般的な命令追従ベンチマークの両方において,大幅な性能向上が期待できることがわかった。
関連論文リスト
- MuSC: Improving Complex Instruction Following with Multi-granularity Self-Contrastive Training [36.483136685734735]
より強力なモデルに頼ることなく、複雑な命令アライメントを改善するために、MuSC(Multi-granularity Self-Contrastive Training)フレームワークを提案する。
提案手法は,オープンソースモデルを用いて評価し,提案手法が複雑かつ一般的な命令追従ベンチマークにおいて有意な改善をもたらすことを示す実験結果を得た。
論文 参考訳(メタデータ) (2025-02-17T08:12:49Z) - Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVAは、幻覚を減らすための学習知識とよく一致した高品質なデータを特定するために設計されたフレームワークである。
内部整合性探索(ICP)とセマンティック等価同定(SEI)が含まれており、LLMが命令データとどれだけ親しみやすいかを測定する。
選択したサンプルの品質を確保するため,親しみ以上の特性を考慮した専門家による報酬モデルを導入する。
論文 参考訳(メタデータ) (2025-02-11T08:05:56Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
そこで我々は,AITP(Aligning Instruction Tuning with Pre-training)を提案する。
8つのベンチマークで3つの完全にオープンな大規模言語モデル(LLM)上で,AITPによる一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2025-01-16T08:27:40Z) - Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs [4.096028601599825]
パブリック使用のための大規模言語モデル(LLM)は、最新のデータと最新の状態を維持するために、継続的な事前トレーニングを必要とする。
本研究では、命令データや微調整を必要とせず、最新の知識と命令追従能力を得るための最も計算効率の良い戦略を見つけることを目的とする。
論文 参考訳(メタデータ) (2024-10-14T17:20:30Z) - Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
本稿では,人間とLLMの選好アライメントという2つのユニークな視点から導いた,新しい命令キュレーションアルゴリズムを提案する。
実験により,合成マルチモーダル命令を最大90%圧縮することにより,モデル性能の維持や改善が可能であることが示された。
論文 参考訳(メタデータ) (2024-09-27T08:20:59Z) - MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs [47.94710556156627]
MIA-Benchは、マルチモーダルな大規模言語モデル(MLLM)を、複雑な命令に厳密に準拠する能力に基づいて評価するために設計されたベンチマークである。
私たちのベンチマークでは、400のイメージプロンプトペアで構成されており、それぞれが階層化された命令に対するモデルのコンプライアンスに挑戦するために作られています。
論文 参考訳(メタデータ) (2024-07-01T17:53:35Z) - Mosaic-IT: Free Compositional Data Augmentation Improves Instruction Tuning [30.82220015525281]
モザイクインストラクションチューニング(Mosaic Instruction Tuning、モザイクインストラクションチューニング、Mosaic-IT)は、人間/モデルなしのコンポジションデータ拡張手法である。
Mosaic-ITは、既存の命令チューニングデータから、ランダムにリッチで多様な拡張を生成する。
評価の結果,モザイクITの性能と訓練効率が向上した。
論文 参考訳(メタデータ) (2024-05-22T04:08:20Z) - What Makes for Good Visual Instructions? Synthesizing Complex Visual Reasoning Instructions for Visual Instruction Tuning [111.01953096869947]
マルチモーダル大言語モデル(MLLM)のゼロショット一般化能力向上に視覚的指導チューニングが不可欠である
我々は,高品質な視覚的推論命令を自動生成する体系的手法を開発した。
実験結果から, MLLMの強化性能が一貫した結果を得た。
論文 参考訳(メタデータ) (2023-11-02T15:36:12Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。