論文の概要: Enhancing LLM Robustness to Perturbed Instructions: An Empirical Study
- arxiv url: http://arxiv.org/abs/2504.02733v1
- Date: Thu, 03 Apr 2025 16:17:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:56:57.796694
- Title: Enhancing LLM Robustness to Perturbed Instructions: An Empirical Study
- Title(参考訳): 摂動命令に対するLLMロバスト性の向上に関する実証的研究
- Authors: Aryan Agrawal, Lisa Alazraki, Shahin Honarvar, Marek Rei,
- Abstract要約: ダウンストリーム性能を著しく低下させるタスク特化命令の文字・単語レベルの編集について検討した。
平均的に、自己否定は、代替戦略よりも大幅に高いパフォーマンス向上を達成することが分かっています。
- 参考スコア(独自算出の注目度): 8.827173113748701
- License:
- Abstract: Large Language Models (LLMs) are highly vulnerable to input perturbations, as even a small prompt change may result in a substantially different output. Existing methods to enhance LLM robustness are primarily focused on perturbed data samples, whereas improving resiliency to perturbations of task-level instructions has remained relatively underexplored. In this work, we focus on character- and word-level edits of task-specific instructions, which substantially degrade downstream performance. We experiment with a variety of techniques to enhance the robustness of LLMs, including self-denoising and representation alignment, testing different models (Llama 3 and Flan-T5), datasets (CoLA, QNLI, SST-2) and instructions (both task-oriented and role-oriented). We find that, on average, self-denoising -- whether performed by a frozen LLM or a fine-tuned model -- achieves substantially higher performance gains than alternative strategies, including more complex baselines such as ensembling and supervised methods.
- Abstract(参考訳): 大規模言語モデル(LLM)は入力の摂動に対して非常に脆弱である。
LLMのロバスト性を高める既存の方法は、主に摂動データサンプルに焦点を当てているが、タスクレベルの命令の摂動に対するレジリエンスの改善は、比較的過小評価されている。
本研究では,ダウンストリーム性能を著しく低下させるタスク固有命令の文字・単語レベルの編集に焦点をあてる。
本研究では,Llama 3とFlan-T5),データセット(CoLA,QNLI,SST-2),命令(タスク指向とロール指向の両方)など,LCMのロバスト性を高めるための様々な手法を実験した。
凍結したLLMや微調整されたモデルで実行されたとしても、平均して自己決定は、アンサンブルや教師付きメソッドのようなより複雑なベースラインを含む、代替戦略よりも大幅に高いパフォーマンス向上を達成する。
関連論文リスト
- Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
LLM生成データによる微調整により,目標タスク性能が向上し,ドメイン外劣化の低減が図られる。
LLM生成トレーニングデータによって与えられる優れたOODロバスト性について、これが最初の力学的説明である。
論文 参考訳(メタデータ) (2025-01-24T08:18:56Z) - LF-Steering: Latent Feature Activation Steering for Enhancing Semantic Consistency in Large Language Models [16.37602070339033]
LLM(Large Language Models)は、意味的に等価なパラフレーズ入力によって、しばしば一貫性のない応答を生成する。
セマンティック不整合の原因となる潜在特徴表現を正確に識別する新しいアクティベーションステアリング手法LF-ステアリングを提案する。
本手法は, 関連トランス層の隠蔽状態をスパースオートエンコーダに基づいて, 疎活性化された高次元特徴空間にマッピングする。
論文 参考訳(メタデータ) (2025-01-19T13:06:51Z) - The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
本研究は,インコンテキストの例を用いて誘導されるベースモデルと,命令調整モデルが根本的に異なる機能を持つかどうかを考察する。
命令調整モデルの性能は,基本モデルのコンテキスト内性能と大きく相関していることを示す。
具体的には、この理解を命令付きモデルに拡張し、事前学習データも同様に、解決可能なタスクの制限境界を設定することを示唆する。
論文 参考訳(メタデータ) (2025-01-15T10:57:55Z) - LLMs are Also Effective Embedding Models: An In-depth Overview [40.53941563464671]
大規模言語モデル(LLM)は、様々なタスクで最先端のパフォーマンスを達成することによって、自然言語処理に革命をもたらした。
近年、埋め込みモデルとしての有効性が注目され、ELMoやBERTのような従来のエンコーダのみのモデルから、GPT、LLaMA、Mistralのようなデコーダのみの大規模LLMへとパラダイムシフトした。
論文 参考訳(メタデータ) (2024-12-17T06:48:24Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
インストラクションチューニングは、大きな言語モデルにオープンドメイン命令と人間優先応答を合わせることを目的としている。
学生のLLMの追従が難しい命令を選択するために,TAPIR(Task-Aware Curriculum Planning for Instruction Refinement)を導入する。
学生の能力のバランスをとるために、トレーニングセット内のタスク分布は、対応するタスクに応じて自動的に調整された応答で調整される。
論文 参考訳(メタデータ) (2024-05-22T08:38:26Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context Learning (ICL) は、近年の大規模言語モデル(LLM)の進歩により、効率的なアプローチとなっている。
しかし、両方のパラダイムは、過信の批判的な問題(すなわち、誤校正)に苦しむ傾向にある。
論文 参考訳(メタデータ) (2023-12-21T11:55:10Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Revisit Input Perturbation Problems for LLMs: A Unified Robustness
Evaluation Framework for Noisy Slot Filling Task [18.623619585980688]
本研究では,大言語モデルの対話理解能力を評価するために,スロット充足タスクに基づく統一ロバストネス評価フレームワークを提案する。
具体的には,5種類の単一摂動と4種類の混合摂動データを含む入力摂動評価データセットであるノイズLLMを構築した。
本研究の目的は,LLMの様々なロバスト性評価手法が実世界の雑音のシナリオでどの程度機能するかを評価することである。
論文 参考訳(メタデータ) (2023-10-10T10:22:05Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。