Semi-Supervised Domain Adaptation Using Target-Oriented Domain Augmentation for 3D Object Detection
- URL: http://arxiv.org/abs/2406.11313v1
- Date: Mon, 17 Jun 2024 08:19:40 GMT
- Title: Semi-Supervised Domain Adaptation Using Target-Oriented Domain Augmentation for 3D Object Detection
- Authors: Yecheol Kim, Junho Lee, Changsoo Park, Hyoung won Kim, Inho Lim, Christopher Chang, Jun Won Choi,
- Abstract summary: 3D object detection is crucial for applications like autonomous driving and robotics.
Semi-Supervised Domain Adaptation (SSDA) aims to mitigate these challenges by transferring knowledge from a source domain to a target domain.
This paper presents a new SSDA method referred to as Target-Oriented Augmentation Domain (TODA) specifically tailored for LiDAR-based 3D object detection.
- Score: 13.873877368139667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object detection is crucial for applications like autonomous driving and robotics. However, in real-world environments, variations in sensor data distribution due to sensor upgrades, weather changes, and geographic differences can adversely affect detection performance. Semi-Supervised Domain Adaptation (SSDA) aims to mitigate these challenges by transferring knowledge from a source domain, abundant in labeled data, to a target domain where labels are scarce. This paper presents a new SSDA method referred to as Target-Oriented Domain Augmentation (TODA) specifically tailored for LiDAR-based 3D object detection. TODA efficiently utilizes all available data, including labeled data in the source domain, and both labeled data and unlabeled data in the target domain to enhance domain adaptation performance. TODA consists of two stages: TargetMix and AdvMix. TargetMix employs mixing augmentation accounting for LiDAR sensor characteristics to facilitate feature alignment between the source-domain and target-domain. AdvMix applies point-wise adversarial augmentation with mixing augmentation, which perturbs the unlabeled data to align the features within both labeled and unlabeled data in the target domain. Our experiments conducted on the challenging domain adaptation tasks demonstrate that TODA outperforms existing domain adaptation techniques designed for 3D object detection by significant margins. The code is available at: https://github.com/rasd3/TODA.
Related papers
- STAL3D: Unsupervised Domain Adaptation for 3D Object Detection via Collaborating Self-Training and Adversarial Learning [21.063779140059157]
Existing 3D object detection suffers from expensive annotation costs and poor transferability to unknown data due to the domain gap.
We propose a novel unsupervised domain adaptation framework for 3D object detection via collaborating ST and AL, dubbed as STAL3D, unleashing the complementary advantages of pseudo labels and feature distribution alignment.
arXiv Detail & Related papers (2024-06-27T17:43:35Z) - Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
We propose a novel framework for syn-to-real unsupervised domain adaptation in indoor 3D object detection.
Our adaptation results from synthetic dataset 3D-FRONT to real-world datasets ScanNetV2 and SUN RGB-D demonstrate remarkable mAP25 improvements of 9.7% and 9.1% over Source-Only baselines.
arXiv Detail & Related papers (2024-06-17T08:18:41Z) - Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
Semi-supervised domain adaptation (SSDA) aims to bridge source and target domain distributions, with a small number of target labels available.
Existing SSDA work fails to make full use of label information from both source and target domains for feature alignment across domains.
This paper presents a novel SSDA approach, Inter-domain Mixup with Neighborhood Expansion (IDMNE), to tackle this issue.
arXiv Detail & Related papers (2024-01-21T10:20:46Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
3D object detection from point clouds is crucial in safety-critical autonomous driving.
We propose a density-insensitive domain adaption framework to address the density-induced domain gap.
Experimental results on three widely adopted 3D object detection datasets demonstrate that our proposed domain adaption method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-04-19T06:33:07Z) - Bi3D: Bi-domain Active Learning for Cross-domain 3D Object Detection [32.29833072399945]
We propose a Bi-domain active learning approach, namely Bi3D, to solve the cross-domain 3D object detection task.
Bi3D achieves a promising target-domain detection accuracy (89.63% on KITTI) compared with UDAbased work (84.29%), even surpassing the detector trained on the full set of the labeled target domain.
arXiv Detail & Related papers (2023-03-10T12:38:37Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
We present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D)
SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage.
Experiments show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label.
arXiv Detail & Related papers (2022-12-06T09:32:44Z) - Geometry-Aware Network for Domain Adaptive Semantic Segmentation [64.00345743710653]
We propose a novel Geometry-Aware Network for Domain Adaptation (GANDA) to shrink the domain gaps.
We exploit 3D topology on the point clouds generated from RGB-D images for coordinate-color disentanglement and pseudo-labels refinement in the target domain.
Our model outperforms state-of-the-arts on GTA5->Cityscapes and SYNTHIA->Cityscapes.
arXiv Detail & Related papers (2022-12-02T00:48:44Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
We propose an unsupervised domain adaptation framework to bridge the domain gap between source and target domains.
We use a data augmentation scheme that simulates weather distortions to add domain confusion and prevent overfitting on the source data.
Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap.
arXiv Detail & Related papers (2022-03-07T18:10:40Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.