論文の概要: Reconfigurable Intelligent Surface Assisted VEC Based on Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2406.11318v1
- Date: Mon, 17 Jun 2024 08:35:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:41:08.162574
- Title: Reconfigurable Intelligent Surface Assisted VEC Based on Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習に基づく再構成可能なインテリジェント表面支援VEC
- Authors: Kangwei Qi, Qiong Wu, Pingyi Fan, Nan Cheng, Qiang Fan, Jiangzhou Wang,
- Abstract要約: 車両のエッジコンピューティングは、タスクをローカルに実行したり、近くのエッジデバイスにオフロードすることで、高強度タスクを実行することができる。
リアシスト(RIS)は、車両通信をサポートし、代替の通信経路を提供するために導入された。
改良型マルチエージェント・ディープ決定性勾配ポリシーを応用した新しい深層強化学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 33.620752444256716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicular edge computing (VEC) is an emerging technology that enables vehicles to perform high-intensity tasks by executing tasks locally or offloading them to nearby edge devices. However, obstacles such as buildings may degrade the communications and incur communication interruptions, and thus the vehicle may not meet the requirement for task offloading. Reconfigurable intelligent surfaces (RIS) is introduced to support vehicle communication and provide an alternative communication path. The system performance can be improved by flexibly adjusting the phase-shift of the RIS. For RIS-assisted VEC system where tasks arrive randomly, we design a control scheme that considers offloading power, local power allocation and phase-shift optimization. To solve this non-convex problem, we propose a new deep reinforcement learning (DRL) framework that employs modified multi-agent deep deterministic policy gradient (MADDPG) approach to optimize the power allocation for vehicle users (VUs) and block coordinate descent (BCD) algorithm to optimize the phase-shift of the RIS. Simulation results show that our proposed scheme outperforms the centralized deep deterministic policy gradient (DDPG) scheme and random scheme.
- Abstract(参考訳): Vehicular Edge Computing(VEC)は、車両がタスクをローカルに実行したり、近くのエッジデバイスにオフロードすることで、高強度タスクを実行できる新興技術である。
しかし、建物などの障害物は通信を劣化させ、通信の中断を招く可能性があるため、車両はタスクオフロードの要件を満たすことができない。
再構成可能なインテリジェントサーフェス(RIS)は、車両通信をサポートし、代替の通信経路を提供するために導入された。
RISの位相シフトを柔軟に調整することによりシステム性能を向上させることができる。
タスクがランダムに到着するRIS支援VECシステムに対して,オフロード電力,ローカル電力割り当て,位相シフト最適化を考慮した制御方式を設計する。
この非凸問題を解決するために,車両ユーザ(VU)の電力配分を最適化するためにMADDPG(Multi-Adnt Deep Deterministic Policy gradient)アプローチとRISの位相シフトを最適化するためのブロック座標偏移(BCD)アルゴリズムを用いる,新しい深部強化学習(DRL)フレームワークを提案する。
シミュレーションの結果,提案手法は中央集権的決定主義政策勾配(DDPG)法とランダムスキームよりも優れていた。
関連論文リスト
- Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation [28.47670676456068]
本稿では、車載通信を支援するための代替通信経路を提供するRIS(Reconfigurable Intelligent Surfaces)について紹介する。
本稿では、RIS位相シフト係数を最適化するDeep Deterministic Policy Gradient(DDPG)アルゴリズムと、車両ユーザ(VU)の電力配分を最適化するMulti-Agent Deep Deterministic Policy Gradient(MADDPG)アルゴリズムを組み合わせたDRLフレームワークを提案する。
シミュレーションの結果,提案手法は従来の集中型DDPG, Twin Delayed Deep Deterministic Policy Gradient (TD3) およびいくつかの典型的なスキームよりも優れていた。
論文 参考訳(メタデータ) (2024-07-18T03:18:59Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
第6世代(6G)ネットワークは、従来のRISの限界を克服するために、再構成可能なインテリジェントサーフェス(STAR-RIS)を同時に送信および反射する。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を示す。
屋内通信に複数のアクセスポイント(AP)とSTAR-RISを利用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Deep-Reinforcement-Learning-Based AoI-Aware Resource Allocation for RIS-Aided IoV Networks [43.443526528832145]
車両間通信(V2X)方式を考慮したRIS支援車両インターネット(IoV)を提案する。
車両間リンク(V2I)のタイムラインと車両間リンク(V2V)の安定性を改善するため,情報量(AoI)モデルとペイロード伝達確率モデルを導入する。
論文 参考訳(メタデータ) (2024-06-17T06:16:07Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
本稿では,ワイヤレスエッジにおけるエネルギー効率,低レイテンシ,高精度な推論のための新しいアルゴリズムを提案する。
本稿では,新しいデータを一連のデバイスで連続的に生成・収集し,動的キューシステムを通じて処理するシナリオについて考察する。
論文 参考訳(メタデータ) (2023-05-18T12:46:42Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
再構成可能なインテリジェントサーフェス(RIS)は、無線ネットワークのための無線伝搬環境をカスタマイズする革命的な機能を持つ。
無線システムにおけるRISの利点を完全に活用するには、反射素子の位相を従来の通信資源と共同で設計する必要がある。
本稿では、RISが課す制約を扱うための現在の最適化手法と人工知能に基づく手法についてレビューする。
論文 参考訳(メタデータ) (2022-04-28T09:26:14Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
通信可能な屋内知的ロボット(IR)サービスフレームワークを提案する。
室内レイアウトとチャネル状態を決定論的に記述できるレゴモデリング手法が提案されている。
調査対象の無線マップは、強化学習エージェントを訓練するための仮想環境として呼び出される。
論文 参考訳(メタデータ) (2020-11-23T21:45:01Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
再構成可能なインテリジェントサーフェス(RIS)の配置と受動ビームフォーミング設計のための新しいフレームワークを提案する。
エネルギー効率を最大化するために、共同配置、位相シフト設計、および電力配分の問題を定式化する。
リアルタイムデータセットを活用することで,ユーザの遠隔交通需要を予測するために,LSTM(Long Short-term memory)ベースのエコー状態ネットワーク(ESN)アルゴリズムを提案する。
RISの展開と設計の連立問題を解くために,D3QNに基づく位置取得と位相制御アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-28T14:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。