論文の概要: Generative AI-Enhanced Cooperative MEC of UAVs and Ground Stations for Unmanned Surface Vehicles
- arxiv url: http://arxiv.org/abs/2502.08119v1
- Date: Wed, 12 Feb 2025 04:42:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:45:37.257287
- Title: Generative AI-Enhanced Cooperative MEC of UAVs and Ground Stations for Unmanned Surface Vehicles
- Title(参考訳): 無人表面車両におけるUAVと地上局のAIによる協調型MEC生成
- Authors: Jiahao You, Ziye Jia, Chao Dong, Qihui Wu, Zhu Han,
- Abstract要約: 無人地上機(USV)は低コストで柔軟な航空サービスを提供している。
地上局(GS)は、複雑なシナリオでUSVを支援するために協力する強力な支援を提供することができる。
本稿では,UAVとGSをベースとした堅牢なマルチアクセスエッジコンピューティングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 36.3157805511305
- License:
- Abstract: The increasing deployment of unmanned surface vehicles (USVs) require computational support and coverage in applications such as maritime search and rescue. Unmanned aerial vehicles (UAVs) can offer low-cost, flexible aerial services, and ground stations (GSs) can provide powerful supports, which can cooperate to help the USVs in complex scenarios. However, the collaboration between UAVs and GSs for USVs faces challenges of task uncertainties, USVs trajectory uncertainties, heterogeneities, and limited computational resources. To address these issues, we propose a cooperative UAV and GS based robust multi-access edge computing framework to assist USVs in completing computational tasks. Specifically, we formulate the optimization problem of joint task offloading and UAV trajectory to minimize the total execution time, which is in the form of mixed integer nonlinear programming and NP-hard to tackle. Therefore, we propose the algorithm of generative artificial intelligence-enhanced heterogeneous agent proximal policy optimization (GAI-HAPPO). The proposed algorithm integrates GAI models to enhance the actor network ability to model complex environments and extract high-level features, thereby allowing the algorithm to predict uncertainties and adapt to dynamic conditions. Additionally, GAI stabilizes the critic network, addressing the instability of multi-agent reinforcement learning approaches. Finally, extensive simulations demonstrate that the proposed algorithm outperforms the existing benchmark methods, thus highlighting the potentials in tackling intricate, cross-domain issues in the considered scenarios.
- Abstract(参考訳): 無人表面車両(USV)の配備の増加は、海上捜索や救助などのアプリケーションにおける計算支援とカバレッジを必要としている。
無人航空機(UAV)は低コストで柔軟な航空サービスを提供し、地上局(GS)は、複雑なシナリオでUSVを支援する強力な支援を提供することができる。
しかし、UAVとGSs for USVsの協力は、タスクの不確実性、USVの軌道の不確実性、不均一性、限られた計算資源の課題に直面している。
これらの課題に対処するために,UAV と GS をベースとした堅牢なマルチアクセスエッジコンピューティングフレームワークを提案する。
具体的には、結合タスクオフロードとUAV軌道の最適化問題を定式化し、全実行時間を最小化する。
そこで,本稿では,人工知能を駆使した異種エージェント近位ポリシー最適化(GAI-HAPPO)のアルゴリズムを提案する。
提案アルゴリズムは,GAIモデルを統合し,複雑な環境をモデル化し,高レベルの特徴を抽出するアクタネットワーク能力を向上し,不確実性を予測し,動的条件に適応できるようにする。
さらに、GAIは批判ネットワークを安定化させ、マルチエージェント強化学習アプローチの不安定性に対処する。
最後に,提案アルゴリズムは既存のベンチマーク手法よりも優れており,考慮されたシナリオにおける複雑なドメイン間問題に対処する可能性を強調している。
関連論文リスト
- Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
無人航空機(UAV)は、地上通信を改善するための航空基地局(BS)として登場した。
この作業では、UAV対応仮想アンテナアレイによる協調ビームフォーミングを使用して、UAVから地上モバイルユーザへの伝送性能を向上させる。
論文 参考訳(メタデータ) (2025-02-09T09:15:47Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
低高度経済は、コミュニケーションやセンシングなどの分野で発展する大きな可能性を秘めている。
本稿では,SAGINにおけるマルチUAV協調タスクスケジューリング問題に対処するため,クラスタリングに基づく多エージェントDeep Deterministic Policy Gradient (CMADDPG)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:17:33Z) - DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
本稿では,マルチエージェント強化学習(MARL)と生成拡散モデル(GDM)を組み合わせた共同手法を提案する。
第2段階では,GDMのリバース・デノナイズ・プロセスを利用して,マルチエージェント・ディープ・Deep Deterministic Policy gradient(MADDPG)におけるアクタネットワークを置き換える新しいDNNタスク割当アルゴリズム(GDM-MADDPG)を導入する。
シミュレーションの結果,提案アルゴリズムは,経路計画,情報化時代(AoI),エネルギー消費,タスク負荷分散の観点から,ベンチマークに比較して良好な性能を示した。
論文 参考訳(メタデータ) (2024-11-13T02:41:02Z) - Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation [28.47670676456068]
本稿では、車載通信を支援するための代替通信経路を提供するRIS(Reconfigurable Intelligent Surfaces)について紹介する。
本稿では、RIS位相シフト係数を最適化するDeep Deterministic Policy Gradient(DDPG)アルゴリズムと、車両ユーザ(VU)の電力配分を最適化するMulti-Agent Deep Deterministic Policy Gradient(MADDPG)アルゴリズムを組み合わせたDRLフレームワークを提案する。
シミュレーションの結果,提案手法は従来の集中型DDPG, Twin Delayed Deep Deterministic Policy Gradient (TD3) およびいくつかの典型的なスキームよりも優れていた。
論文 参考訳(メタデータ) (2024-07-18T03:18:59Z) - Reconfigurable Intelligent Surface Assisted VEC Based on Multi-Agent Reinforcement Learning [33.620752444256716]
車両のエッジコンピューティングは、タスクをローカルに実行したり、近くのエッジデバイスにオフロードすることで、高強度タスクを実行することができる。
リアシスト(RIS)は、車両通信をサポートし、代替の通信経路を提供するために導入された。
改良型マルチエージェント・ディープ決定性勾配ポリシーを応用した新しい深層強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-17T08:35:32Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Sum-Rate Maximization for UAV-assisted Visible Light Communications
using NOMA: Swarm Intelligence meets Machine Learning [15.385078410753986]
非直交多重アクセスネットワークを用いたUAV支援可視光通信(VLC)を検討する。
サービス利用者とUAVの位置の合計を最大化するために、電力配分とUAV配置の問題を策定します。
ハリスホークス最適化(HHO)を用いて定式化課題の解法と効率的な解法を提案する。
論文 参考訳(メタデータ) (2021-01-10T08:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。