論文の概要: Fine-grained Controllable Text Generation through In-context Learning with Feedback
- arxiv url: http://arxiv.org/abs/2406.11338v1
- Date: Mon, 17 Jun 2024 08:55:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:41:08.126662
- Title: Fine-grained Controllable Text Generation through In-context Learning with Feedback
- Title(参考訳): フィードバックを用いたインコンテキスト学習による微粒化制御可能なテキスト生成
- Authors: Sarubi Thillainathan, Alexander Koller,
- Abstract要約: 本稿では,依存度などの非自明な言語的特徴の特定の値に一致させるために,入力文を書き換える手法を提案する。
従来の研究とは対照的に、本手法は微調整ではなく文脈内学習を用いており、データが少ないユースケースに適用できる。
- 参考スコア(独自算出の注目度): 57.396980277089135
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a method for rewriting an input sentence to match specific values of nontrivial linguistic features, such as dependency depth. In contrast to earlier work, our method uses in-context learning rather than finetuning, making it applicable in use cases where data is sparse. We show that our model performs accurate rewrites and matches the state of the art on rewriting sentences to a specified school grade level.
- Abstract(参考訳): 本稿では,依存度などの非自明な言語的特徴の特定の値に一致させるために,入力文を書き換える手法を提案する。
従来の研究とは対照的に、本手法は微調整ではなく文脈内学習を用いており、データが少ないユースケースに適用できる。
そこで,本モデルでは,文章の書き直しに精度の高い書き直しを行い,テキストの書き直しを行う。
関連論文リスト
- Manual Verbalizer Enrichment for Few-Shot Text Classification [1.860409237919611]
acrshortmaveは、クラスラベルの豊か化による動詞化のためのアプローチである。
本モデルでは, 資源を著しく減らしながら, 最先端の成果が得られている。
論文 参考訳(メタデータ) (2024-10-08T16:16:47Z) - Efficiently Leveraging Linguistic Priors for Scene Text Spotting [63.22351047545888]
本稿では,大規模テキストコーパスから言語知識を活用する手法を提案する。
シーンテキストデータセットとよく一致したテキスト分布を生成し、ドメイン内の微調整の必要性を取り除く。
実験結果から,本手法は認識精度を向上するだけでなく,単語のより正確な局所化を可能にすることが示された。
論文 参考訳(メタデータ) (2024-02-27T01:57:09Z) - Neural machine translation for automated feedback on children's
early-stage writing [3.0695550123017514]
本稿では,機械学習を用いた早期執筆のためのフィードバックの評価と構築の課題に対処する。
そこで本研究では,学生による「伝統的な」文章の翻訳にシーケンシャル・ツー・シーケンス・モデルを用いることを提案する。
論文 参考訳(メタデータ) (2023-11-15T21:32:44Z) - Conjunct Resolution in the Face of Verbal Omissions [51.220650412095665]
本稿では,テキスト上で直接動作する接続分解タスクを提案し,コーディネーション構造に欠けている要素を復元するために,分割・言い換えパラダイムを利用する。
クラウドソースアノテーションによる自然に発生する動詞の省略例を10万件以上を含む,大規模なデータセットをキュレートする。
我々は、このタスクのために様々な神経ベースラインをトレーニングし、最良の手法が適切なパフォーマンスを得る一方で、改善のための十分なスペースを残していることを示す。
論文 参考訳(メタデータ) (2023-05-26T08:44:02Z) - The Short Text Matching Model Enhanced with Knowledge via Contrastive
Learning [8.350445155753167]
本稿では,コントラスト学習と外部知識を組み合わせた短いテキストマッチングモデルを提案する。
ノイズを避けるため、原文の主文としてキーワードを用いて、知識ベースで対応する知識語を検索する。
設計モデルは,2つの公開可能な中国語テキストマッチングデータセット上で,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-04-08T03:24:05Z) - Revisiting text decomposition methods for NLI-based factuality scoring
of summaries [9.044665059626958]
細粒度分解が必ずしも事実性スコアの勝利戦略であるとは限らないことを示す。
また,従来提案されていたエンテーメントに基づくスコアリング手法の小さな変更により,性能が向上することを示した。
論文 参考訳(メタデータ) (2022-11-30T09:54:37Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
自然言語の独特な性質は、テキスト表現の分離をより困難にする。
情報理論にインスパイアされた本研究では,テキストの不整合表現を効果的に表現する手法を提案する。
条件付きテキスト生成とテキストスタイル転送の両方の実験は、不整合表現の質を実証する。
論文 参考訳(メタデータ) (2020-06-01T03:36:01Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
我々は、テキストスタイルの転送とは逆の文書スケールのテキストコンテンツ操作という、新しい実践的なタスクに焦点を当てる。
詳細は、入力は構造化されたレコードと、別のレコードセットを記述するための参照テキストのセットである。
出力は、ソースレコードセットの部分的内容と参照の書き込みスタイルを正確に記述した要約である。
論文 参考訳(メタデータ) (2020-02-24T12:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。