論文の概要: Manual Verbalizer Enrichment for Few-Shot Text Classification
- arxiv url: http://arxiv.org/abs/2410.06173v1
- Date: Tue, 8 Oct 2024 16:16:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 10:50:51.524477
- Title: Manual Verbalizer Enrichment for Few-Shot Text Classification
- Title(参考訳): Few-Shotテキスト分類のためのマニュアルバーバリザの強化
- Authors: Quang Anh Nguyen, Nadi Tomeh, Mustapha Lebbah, Thierry Charnois, Hanene Azzag, Santiago Cordoba Muñoz,
- Abstract要約: acrshortmaveは、クラスラベルの豊か化による動詞化のためのアプローチである。
本モデルでは, 資源を著しく減らしながら, 最先端の成果が得られている。
- 参考スコア(独自算出の注目度): 1.860409237919611
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the continuous development of pre-trained language models, prompt-based training becomes a well-adopted paradigm that drastically improves the exploitation of models for many natural language processing tasks. Prompting also shows great performance compared to traditional fine-tuning when adapted to zero-shot or few-shot scenarios where the number of annotated data is limited. In this framework, the role of verbalizers is essential, as an interpretation from masked word distributions into output predictions. In this work, we propose \acrshort{mave}, an approach for verbalizer construction by enrichment of class labels using neighborhood relation in the embedding space of words for the text classification task. In addition, we elaborate a benchmarking procedure to evaluate typical baselines of verbalizers for document classification in few-shot learning contexts. Our model achieves state-of-the-art results while using significantly fewer resources. We show that our approach is particularly effective in cases with extremely limited supervision data.
- Abstract(参考訳): 事前訓練された言語モデルの継続的な開発により、プロンプトベースのトレーニングは、多くの自然言語処理タスクに対するモデルの活用を大幅に改善する、よく訓練されたパラダイムとなる。
アノテーション付きデータの数が制限されたゼロショットや少数ショットのシナリオに適応する場合、従来の微調整と比較して、プロンプティングは優れたパフォーマンスを示す。
この枠組みでは,マスキングされた単語分布から出力予測への解釈として,話し言葉の役割が不可欠である。
そこで本研究では,テキスト分類タスクにおける単語の埋め込み空間における近傍関係を用いたクラスラベルの強化による言語化のための手法である<acrshort{mave}を提案する。
さらに, 文書分類のための文節分類手法として, 数ショットの学習文脈において, 文節分類の典型的なベースラインを評価するために, ベンチマーク手法を精査する。
本モデルでは, 資源を著しく減らしながら, 最先端の成果が得られている。
極めて限られた監視データを持つ場合に,本手法が特に有効であることを示す。
関連論文リスト
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
ポインター誘導セグメントオーダリング(SO)は,段落レベルのテキスト表現の文脈的理解を高めることを目的とした,新しい事前学習手法である。
実験の結果,ポインタ誘導型事前学習は複雑な文書構造を理解する能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-06T15:17:51Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - In-Context Probing: Toward Building Robust Classifiers via Probing Large
Language Models [5.5089506884366735]
本稿では, In-Context Probing (ICP) という代替手法を提案する。
インコンテキスト学習と同様に、入力の表現を命令で文脈化するが、出力予測を復号する代わりに、ラベルを予測するために文脈化表現を探索する。
我々はICPがファインタニングよりも優れていることを示し、より小さなモデルの上に分類器を構築するのに特に有用であることを示した。
論文 参考訳(メタデータ) (2023-05-23T15:43:04Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
本稿では,文脈認識型分類器の学習を通じて文脈ヒントを利用する。
本手法はモデルに依存しないため,ジェネリックセグメンテーションモデルにも容易に適用できる。
無視できる追加パラメータと+2%の推論時間だけで、小型モデルと大型モデルの両方で十分な性能向上が達成されている。
論文 参考訳(メタデータ) (2023-03-21T07:00:35Z) - Class Enhancement Losses with Pseudo Labels for Zero-shot Semantic
Segmentation [40.09476732999614]
マスクの提案モデルは、ゼロショットセマンティックセグメンテーションの性能を大幅に改善した。
トレーニング中にバックグラウンドを埋め込むことは問題であり、結果として得られたモデルが過剰に学習し、正しいラベルではなく、すべての見えないクラスをバックグラウンドクラスとして割り当てる傾向がある。
本稿では,学習中の背景埋め込みの使用を回避し,テキスト埋め込みとマスク提案のセマンティックな関係を類似度スコアのランク付けにより活用する新しいクラス拡張損失を提案する。
論文 参考訳(メタデータ) (2023-01-18T06:55:02Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
多クラス分類のための新しいプレフィックスチューニング手法であるCCPrefixを提案する。
基本的に、ラベル空間における実数対から派生したインスタンス依存の軟式接頭辞は、多クラス分類における言語動詞化を補完するために利用される。
論文 参考訳(メタデータ) (2022-11-11T03:45:59Z) - Eliciting Knowledge from Pretrained Language Models for Prototypical
Prompt Verbalizer [12.596033546002321]
本稿では,事前学習された言語モデルから知識を抽出することに集中し,プロンプト学習のためのプロトタイプなプロンプト動詞化手法を提案する。
ゼロショット設定では、知識は事前訓練された言語モデルから手動で設計され、初期プロトタイプの埋め込みを形成する。
数ショット設定では、モデルは有意義で解釈可能なプロトタイプの埋め込みを学ぶように調整される。
論文 参考訳(メタデータ) (2022-01-14T12:04:37Z) - Obtaining Better Static Word Embeddings Using Contextual Embedding
Models [53.86080627007695]
提案手法はCBOWをベースとした簡易な蒸留法である。
副作用として、我々の手法は文脈的および静的な埋め込みの公正な比較を可能にする。
論文 参考訳(メタデータ) (2021-06-08T12:59:32Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Text Classification with Few Examples using Controlled Generalization [58.971750512415134]
現在の実践は、トレーニング中に見えない単語を、類似した単語とマッピングするために、事前訓練された単語埋め込みに依存している。
私たちの代替案は、未ラベルのパースコーパスから派生したスパース事前訓練された表現から始まります。
これらのベクトル上のフィードフォワードネットワークは、特に低データシナリオにおいて有効であることを示す。
論文 参考訳(メタデータ) (2020-05-18T06:04:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。