論文の概要: Multi-Camera Hand-Eye Calibration for Human-Robot Collaboration in Industrial Robotic Workcells
- arxiv url: http://arxiv.org/abs/2406.11392v1
- Date: Mon, 17 Jun 2024 10:23:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:21:39.039423
- Title: Multi-Camera Hand-Eye Calibration for Human-Robot Collaboration in Industrial Robotic Workcells
- Title(参考訳): 産業用ロボットワークセルにおける人間-ロボット協調のためのマルチカメラハンドアイ校正
- Authors: Davide Allegro, Matteo Terreran, Stefano Ghidoni,
- Abstract要約: 産業シナリオでは、人間とロボットの効果的なコラボレーションは、人間のオペレーターをしっかりと監視するマルチカメラシステムに依存している。
本稿では,ロボットのベースとカメラの双方に対して,それぞれのカメラのポーズを最適化する,革新的で堅牢なマルチカメラハンドアイキャリブレーション手法を提案する。
産業シナリオで収集したMETRICデータセットと実世界のデータを用いた包括的実験により,本手法の優れた性能を示す。
- 参考スコア(独自算出の注目度): 3.76054468268713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In industrial scenarios, effective human-robot collaboration relies on multi-camera systems to robustly monitor human operators despite the occlusions that typically show up in a robotic workcell. In this scenario, precise localization of the person in the robot coordinate system is essential, making the hand-eye calibration of the camera network critical. This process presents significant challenges when high calibration accuracy should be achieved in short time to minimize production downtime, and when dealing with extensive camera networks used for monitoring wide areas, such as industrial robotic workcells. Our paper introduces an innovative and robust multi-camera hand-eye calibration method, designed to optimize each camera's pose relative to both the robot's base and to each other camera. This optimization integrates two types of key constraints: i) a single board-to-end-effector transformation, and ii) the relative camera-to-camera transformations. We demonstrate the superior performance of our method through comprehensive experiments employing the METRIC dataset and real-world data collected on industrial scenarios, showing notable advancements over state-of-the-art techniques even using less than 10 images. Additionally, we release an open-source version of our multi-camera hand-eye calibration algorithm at https://github.com/davidea97/Multi-Camera-Hand-Eye-Calibration.git.
- Abstract(参考訳): 産業のシナリオでは、効果的な人間とロボットのコラボレーションは、通常ロボットのワークセルに現れる閉塞にもかかわらず、人間のオペレーターをしっかりと監視するマルチカメラシステムに依存している。
このシナリオでは、ロボット座標系における人物の正確な位置決めが不可欠であり、カメラネットワークの手目キャリブレーションが重要となる。
このプロセスは、生産ダウンタイムを最小限に抑えるために短時間で高いキャリブレーション精度を達成すべきである場合や、産業用ロボットワークセルなどの広い範囲の監視に使用される広範囲のカメラネットワークを扱う場合、重大な課題となる。
本稿では,ロボットのベースとカメラの双方に対して,それぞれのカメラのポーズを最適化する,革新的で堅牢なマルチカメラハンドアイキャリブレーション手法を提案する。
この最適化は2種類の鍵制約を統合する。
一 シングルボード・ツー・エンド・エフェクタ変換、及び
二 相対カメラ対カメラ変換
産業シナリオで収集したMETRICデータセットと実世界のデータを用いた総合的な実験により,本手法の優れた性能を実証し,10枚以下の画像を用いても最先端技術に対する顕著な進歩を示す。
また、マルチカメラハンドアイ校正アルゴリズムのオープンソース版をhttps://github.com/davidea97/Multi-Camera-Hand-Eye-Calibration.gitでリリースしています。
関連論文リスト
- CtRNet-X: Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera [18.971816395021488]
マーカーレスポーズ推定手法は、カメラとロボットのキャリブレーションに時間を要する物理的な設定を不要にしている。
部分的に見えるロボットマニピュレータでロボットのポーズを推定できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-16T16:22:43Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
ハンドアイキャリブレーションでは、カメラとロボット間の変換を推定する。
ディープラーニングの最近の進歩は、マーカーレス技術を提供するが、それらは課題を提示している。
自動的かつ普遍的なマーカーレスハンドアイキャリブレーションパイプラインであるKalibを提案する。
論文 参考訳(メタデータ) (2024-08-20T06:03:40Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - Robot Hand-Eye Calibration using Structure-from-Motion [9.64487611393378]
そこで本研究では,手眼の校正のためのフレキシブルな手法を提案する。
この解は線形形式で得られることを示す。
提案手法を既存手法と比較し,その有効性を検証した実験を多数実施する。
論文 参考訳(メタデータ) (2023-11-20T14:41:44Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
本稿では,セグメンテーション情報を利用してパラメータ推定を自動化する,外部カメラキャリブレーション手法を提案する。
われわれのアプローチは、カメラのポーズの粗い初期測定と、車両に搭載されたライダーセンサーによる構築に依存している。
シミュレーションおよび実世界のデータを用いて,キャリブレーション結果の低誤差測定を行う。
論文 参考訳(メタデータ) (2022-08-08T07:25:03Z) - Lasers to Events: Automatic Extrinsic Calibration of Lidars and Event
Cameras [67.84498757689776]
本稿では,イベントカメラとライダーの直接校正法について述べる。
フレームベースのカメラインターミディエートおよび/または高精度の手測定への依存を除去する。
論文 参考訳(メタデータ) (2022-07-03T11:05:45Z) - Multi Camera Placement via Z-buffer Rendering for the Optimization of
the Coverage and the Visual Hull [2.642698101441705]
障害セーフシステムは、ロボットワークセルの重要な領域を安全重複で最適にカバーする必要がある。
ワークセルの3次元CADモデルにカメラを最適配置・配向するための効率的なアルゴリズムを提案します。
このシミュレーションにより、静的および動的視覚障害物の存在下で、画像の歪みや高度な画像解析に関する品質を評価することができる。
論文 参考訳(メタデータ) (2021-03-20T17:04:00Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
パターンベースのキャリブレーション技術は、カメラの内在を個別にキャリブレーションするために使用することができる。
Infrastucture-based calibration techniqueはSLAMやStructure-from-Motionで事前に構築した3Dマップを用いて外部情報を推定することができる。
本稿では,インフラストラクチャベースのアプローチを用いて,マルチカメラシステムをスクラッチから完全にキャリブレーションすることを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。