論文の概要: ARC-Calib: Autonomous Markerless Camera-to-Robot Calibration via Exploratory Robot Motions
- arxiv url: http://arxiv.org/abs/2503.14701v1
- Date: Tue, 18 Mar 2025 20:03:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:25.804578
- Title: ARC-Calib: Autonomous Markerless Camera-to-Robot Calibration via Exploratory Robot Motions
- Title(参考訳): ARC-Calib:探査ロボットの動きによる自律型マーカーレスカメラとロボットの校正
- Authors: Podshara Chanrungmaneekul, Yiting Chen, Joshua T. Grace, Aaron M. Dollar, Kaiyu Hang,
- Abstract要約: ARC-Calibはモデルベースのマーカーレスカメラ・ロボットキャリブレーションフレームワークである。
完全に自律的で、多様なロボットにまたがって一般化できる。
- 参考スコア(独自算出の注目度): 15.004750210002152
- License:
- Abstract: Camera-to-robot (also known as eye-to-hand) calibration is a critical component of vision-based robot manipulation. Traditional marker-based methods often require human intervention for system setup. Furthermore, existing autonomous markerless calibration methods typically rely on pre-trained robot tracking models that impede their application on edge devices and require fine-tuning for novel robot embodiments. To address these limitations, this paper proposes a model-based markerless camera-to-robot calibration framework, ARC-Calib, that is fully autonomous and generalizable across diverse robots and scenarios without requiring extensive data collection or learning. First, exploratory robot motions are introduced to generate easily trackable trajectory-based visual patterns in the camera's image frames. Then, a geometric optimization framework is proposed to exploit the coplanarity and collinearity constraints from the observed motions to iteratively refine the estimated calibration result. Our approach eliminates the need for extra effort in either environmental marker setup or data collection and model training, rendering it highly adaptable across a wide range of real-world autonomous systems. Extensive experiments are conducted in both simulation and the real world to validate its robustness and generalizability.
- Abstract(参考訳): カメラ・トゥ・ロボット(英: Camera-to-robot)またはアイ・ツー・ハンド(英: eye-to-hand)キャリブレーション(英: calibration)は、視覚に基づくロボット操作において重要な要素である。
従来のマーカーベースの手法は、システムの設定に人間の介入を必要とすることが多い。
さらに、既存の自律マーカーレスキャリブレーション法は、一般的に、エッジデバイスへの応用を妨げる事前訓練されたロボット追跡モデルに依存しており、新しいロボットの実施のためには微調整が必要である。
これらの制約に対処するために,モデルベースのマーカーレスカメラ・ロボットキャリブレーションフレームワークARC-Calibを提案する。
まず、カメラのイメージフレーム内で容易に追跡可能な軌跡に基づく視覚パターンを生成するために、探索ロボットの動きを導入する。
そこで,観測された動きからのコプラナリティとコリニアリティの制約を利用して,推定キャリブレーション結果を反復的に洗練するために,幾何的最適化フレームワークを提案する。
当社のアプローチでは,環境マーカーの設定やデータ収集,モデルトレーニングといった余分な労力を不要にすることで,さまざまな現実の自律システムに対して高い適応性を実現しています。
シミュレーションと実世界の両方で大規模な実験を行い、その堅牢性と一般化性を検証する。
関連論文リスト
- Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
私たちは世界モデルを学ぶための新しいフレームワークを紹介します。
スケーラブルで堅牢なフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - CtRNet-X: Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera [18.971816395021488]
マーカーレスポーズ推定手法は、カメラとロボットのキャリブレーションに時間を要する物理的な設定を不要にしている。
部分的に見えるロボットマニピュレータでロボットのポーズを推定できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-16T16:22:43Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
ハンドアイキャリブレーションでは、カメラとロボット間の変換を推定する。
ディープラーニングの最近の進歩は、マーカーレス技術を提供するが、それらは課題を提示している。
自動的かつ普遍的なマーカーレスハンドアイキャリブレーションパイプラインであるKalibを提案する。
論文 参考訳(メタデータ) (2024-08-20T06:03:40Z) - Multi-Camera Hand-Eye Calibration for Human-Robot Collaboration in Industrial Robotic Workcells [3.76054468268713]
産業シナリオでは、人間とロボットの効果的なコラボレーションは、人間のオペレーターをしっかりと監視するマルチカメラシステムに依存している。
本稿では,ロボットのベースとカメラの双方に対して,それぞれのカメラのポーズを最適化する,革新的で堅牢なマルチカメラハンドアイキャリブレーション手法を提案する。
産業シナリオで収集したMETRICデータセットと実世界のデータを用いた包括的実験により,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-17T10:23:30Z) - Robot Hand-Eye Calibration using Structure-from-Motion [9.64487611393378]
そこで本研究では,手眼の校正のためのフレキシブルな手法を提案する。
この解は線形形式で得られることを示す。
提案手法を既存手法と比較し,その有効性を検証した実験を多数実施する。
論文 参考訳(メタデータ) (2023-11-20T14:41:44Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
予備的バイナリフレーム分類を用いた物体検出のためのニューラルネットワークの最適化アルゴリズムを提案する。
周囲に6台のローリングシャッターカメラを備えた自律移動ロボットを360度視野として実験装置として使用した。
論文 参考訳(メタデータ) (2021-10-22T15:05:37Z) - Unified Data Collection for Visual-Inertial Calibration via Deep
Reinforcement Learning [24.999540933593273]
本研究では,ロボットアーム上で自動データ収集を行う動作ポリシーを学習するための新しい定式化を提案する。
本手法はモデルフリー深部強化学習を用いてキャリブレーション過程をコンパクトにモデル化する。
シミュレーションでは、手作りのポリシーよりも10倍速くキャリブレーションを実行できます。
論文 参考訳(メタデータ) (2021-09-30T10:03:56Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。