論文の概要: SWCF-Net: Similarity-weighted Convolution and Local-global Fusion for Efficient Large-scale Point Cloud Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2406.11441v1
- Date: Mon, 17 Jun 2024 11:54:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:01:35.501612
- Title: SWCF-Net: Similarity-weighted Convolution and Local-global Fusion for Efficient Large-scale Point Cloud Semantic Segmentation
- Title(参考訳): SWCF-Net: 大規模クラウドセマンティックセマンティックセグメンテーションのための類似重畳畳み込みと局所グロバル融合
- Authors: Zhenchao Lin, Li He, Hongqiang Yang, Xiaoqun Sun, Cuojin Zhang, Weinan Chen, Yisheng Guan, Hong Zhang,
- Abstract要約: SWCF-Net という名前の類似度重み付き畳み込みとローカル・グローバル・フュージョン・ネットワークを提案する。
提案手法は計算コストを削減し,大規模点群を効率的に処理できる。
- 参考スコア(独自算出の注目度): 10.328077317786342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale point cloud consists of a multitude of individual objects, thereby encompassing rich structural and underlying semantic contextual information, resulting in a challenging problem in efficiently segmenting a point cloud. Most existing researches mainly focus on capturing intricate local features without giving due consideration to global ones, thus failing to leverage semantic context. In this paper, we propose a Similarity-Weighted Convolution and local-global Fusion Network, named SWCF-Net, which takes into account both local and global features. We propose a Similarity-Weighted Convolution (SWConv) to effectively extract local features, where similarity weights are incorporated into the convolution operation to enhance the generalization capabilities. Then, we employ a downsampling operation on the K and V channels within the attention module, thereby reducing the quadratic complexity to linear, enabling the Transformer to deal with large-scale point clouds. At last, orthogonal components are extracted in the global features and then aggregated with local features, thereby eliminating redundant information between local and global features and consequently promoting efficiency. We evaluate SWCF-Net on large-scale outdoor datasets SemanticKITTI and Toronto3D. Our experimental results demonstrate the effectiveness of the proposed network. Our method achieves a competitive result with less computational cost, and is able to handle large-scale point clouds efficiently.
- Abstract(参考訳): 大規模ポイントクラウドは、多数の個々のオブジェクトから構成されており、これにより、リッチな構造と基盤となるセマンティックなコンテキスト情報を含んでいるため、ポイントクラウドを効率的にセグメント化する上で難しい問題となる。
既存の研究のほとんどは、グローバルな特徴を考慮せずに複雑な局所的な特徴を捉えることに重点を置いているため、意味的文脈を活用できない。
本稿では,地域的特徴とグローバルな特徴を考慮に入れたSWCF-Netという,類似度重畳畳畳み込みとローカル・グローバル・フュージョン・ネットワークを提案する。
本稿では,類似度重みを畳み込み操作に組み込んで一般化能力を向上する,局所的な特徴を効果的に抽出する,類似度重み付き畳み込み(SWConv)を提案する。
次に、注目モジュール内のKチャネルとVチャネルのダウンサンプリング演算を用い、二次的な複雑性を線形に低減し、Transformerが大規模点雲に対処できるようにする。
最終的に、直交成分を大域的特徴から抽出して局所的特徴に集約し、局所的特徴と大域的特徴の間の冗長な情報を排除し、効率を向上する。
大規模屋外データセットSemanticKITTIとTronto3DのSWCF-Netを評価する。
実験の結果,提案手法の有効性が示された。
提案手法は計算コストを削減し,大規模点群を効率的に処理できる。
関連論文リスト
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
トランスフォーマーベースのモデルは、自己認識機構を活用することにより、先進的なポイントクラウド理解を持つ。
PointACLは、これらの制限に対処するために設計された、注意駆動のコントラスト学習フレームワークである。
本手法では, 注意駆動型動的マスキング手法を用いて, モデルが非集中領域に集中するように誘導する。
論文 参考訳(メタデータ) (2024-11-22T05:41:00Z) - Enhanced Semantic Segmentation for Large-Scale and Imbalanced Point Clouds [6.253217784798542]
小型の物体は、発生頻度が低いため、アンダーサンプリングや誤分類される傾向がある。
本稿では,大規模かつサンプル不均衡なクラウドシーンを対象としたマルチラテラルカスケーディングネットワーク(MCNet)を提案する。
論文 参考訳(メタデータ) (2024-09-21T02:23:01Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - APPT : Asymmetric Parallel Point Transformer for 3D Point Cloud
Understanding [20.87092793669536]
トランスフォーマーベースのネットワークは、3Dポイントクラウド理解において素晴らしいパフォーマンスを達成した。
これらの問題に対処するために,非対称並列点変換器(APPT)を提案する。
APPTは、ローカル詳細機能に集中しながら、ネットワーク全体を通して機能を取り込むことができる。
論文 参考訳(メタデータ) (2023-03-31T06:11:02Z) - LACV-Net: Semantic Segmentation of Large-Scale Point Cloud Scene via
Local Adaptive and Comprehensive VLAD [13.907586081922345]
本稿では,大規模クラウドセマンティックセグメンテーションのための,LACV-Netと呼ばれるエンドツーエンドのディープニューラルネットワークを提案する。
提案するネットワークは,1) 局所適応的特徴拡張モジュール(LAFA) を適応的に学習し,局所的文脈を拡張させる,2) 局所的特徴を多層,マルチスケール,マルチ解像度で融合させて包括的グローバル記述ベクトルを表現する,包括的VLADモジュール,3) LAFAモジュールからの適応的重みを制限してセグメント境界を効果的に最適化する集約損失関数を含む。
論文 参考訳(メタデータ) (2022-10-12T02:11:00Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - Multi-scale Network with Attentional Multi-resolution Fusion for Point
Cloud Semantic Segmentation [2.964101313270572]
ローカルおよびグローバルなマルチスケール情報を集約する総合的なポイントクラウドセマンティックセマンティックセマンティクスネットワークを提案する。
点の局所的な形状を効果的に学習するアングル相関点畳み込みモジュールを提案する。
第3に、2Dイメージビジョンタスクのパフォーマンスに優れたHRNetにインスパイアされた私たちは、ポイントクラウド用にカスタマイズされたHRNetを構築し、グローバルなマルチスケールコンテキストを学習します。
論文 参考訳(メタデータ) (2022-06-27T21:03:33Z) - Conformer: Local Features Coupling Global Representations for Visual
Recognition [72.9550481476101]
本稿では,畳み込み操作と自己アテンション機構を利用した表現学習のためのハイブリッドネットワーク構造,conformerを提案する。
実験では、コンフォーマーが同等のパラメータ複雑性の下で視覚変換器(DeiT-B)を2.3%上回ることが示されている。
論文 参考訳(メタデータ) (2021-05-09T10:00:03Z) - Learning to Predict Context-adaptive Convolution for Semantic
Segmentation [66.27139797427147]
長距離コンテキスト情報は、高性能なセマンティックセグメンテーションを実現するために不可欠である。
空間的に変化する特徴重み付けベクトルを予測するためのコンテキスト適応畳み込みネットワーク(CaC-Net)を提案する。
当社のCaC-Netは,3つの公開データセット上でのセグメンテーション性能に優れています。
論文 参考訳(メタデータ) (2020-04-17T13:09:17Z) - Dense Residual Network: Enhancing Global Dense Feature Flow for
Character Recognition [75.4027660840568]
本稿では,すべての畳み込み層から階層的特徴をフルに活用することにより,局所的・大域的特徴フローを改善する方法について検討する。
技術的には、テキスト認識のための効率的で効果的なCNNフレームワークであるFDRN(Fast Dense Residual Network)を提案する。
論文 参考訳(メタデータ) (2020-01-23T06:55:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。