Bloch sphere representation for Rabi oscillation driven by Rashba field in the two-dimensional harmonic confinement
- URL: http://arxiv.org/abs/2406.11444v1
- Date: Mon, 17 Jun 2024 11:56:17 GMT
- Title: Bloch sphere representation for Rabi oscillation driven by Rashba field in the two-dimensional harmonic confinement
- Authors: Kaichi Arai, Tatsuki Tojo, Kyozaburo Takeda,
- Abstract summary: We study the dynamical properties of Rabi oscillations driven by an alternating Rashba field applied to a two-dimensional (2D) harmonic confinement system.
We employ a two-state rotating wave (TSRW) approach and studied the fundamental features of $theta_B$ and $phi_B$ over time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We studied the dynamical properties of Rabi oscillations driven by an alternating Rashba field applied to a two-dimensional (2D) harmonic confinement system. We solve the time-dependent (TD) Schr\"{o}dinger equation numerically and rewrite the resulting TD wavefunction onto the Bloch sphere (BS) using two BS parameters of the zenith ($\theta_B$) and azimuthal ($\phi_B$) angles, extracting the phase information $\phi_B$ as well as the mixing ratio $\theta_B$ between the two BS-pole states. We employed a two-state rotating wave (TSRW) approach and studied the fundamental features of $\theta_B$ and $\phi_B$ over time. The TSRW approach reveals a triangular wave formation in $\theta_B$. Moreover, at each apex of the triangular wave, the TD wavefunction passes through the BS pole, and the state is completely replaced by the opposite spin state. The TSRW approach also elucidates a linear change in $\phi_B$. The slope of $\phi_B$ vs. time is equal to the difference between the dynamical terms, leading to a confinement potential in the harmonic system. The TSRW approach further demonstrates a jump in the phase difference by $\pi$ when the wavefunction passes through the BS pole. The alternating Rashba field causes multiple successive Rabi transitions in the 2D harmonic system. We then introduce the effective BS (EBS) and transform these complicated transitions into an equivalent "single" Rabi one. Consequently, the EBS parameters $\theta_B^{\mathrm{eff}}$ and $\phi_B^{\mathrm{eff}}$ exhibit mixing and phase difference between two spin states $\alpha$ and $\beta$, leading to a deep understanding of the TD features of multi-Rabi oscillations. Furthermore, the combination of the BS representation with the TSRW approach successfully reveals the dynamical properties of the Rabi oscillation, even beyond the TSRW approximation.
Related papers
- Unifying Floquet theory of longitudinal and dispersive readout [33.7054351451505]
We devise a Floquet theory of longitudinal and dispersive readout in circuit QED.
We apply them to superconducting and spin-hybrid cQED systems.
arXiv Detail & Related papers (2024-07-03T18:00:47Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Developing a simulation tool to investigate a novel trapped two-state
Bose-Einstein condensate Ramsey interferometer driven by dipole oscillations
and gravitational sag [0.0]
We propose and explore the feasibility of a novel Ramsey interferometer created by a trapped two-state Bose-Einstein condensate (BEC)
The BEC is formed in a pure cigar shaped compressed magnetic trap (CMT) via a dilute atom cloud of $87Rb$ atoms in state $vert F=2.
arXiv Detail & Related papers (2023-08-27T11:53:53Z) - Weak universality, quantum many-body scars and anomalous
infinite-temperature autocorrelations in a one-dimensional spin model with
duality [0.0]
We study a one-dimensional spin-$1/2$ model with three-spin interactions and a transverse magnetic field $h$.
We compute the critical exponents $z$, $beta$, $gamma$ and $nu$, and the central charge $c$.
For a system with periodic boundary conditions, there are an exponentially large number of exact mid-spectrum zero-energy eigenstates.
arXiv Detail & Related papers (2023-07-20T18:00:05Z) - Neural Inference of Gaussian Processes for Time Series Data of Quasars [72.79083473275742]
We introduce a new model that enables it to describe quasar spectra completely.
We also introduce a new method of inference of Gaussian process parameters, which we call $textitNeural Inference$.
The combination of both the CDRW model and Neural Inference significantly outperforms the baseline DRW and MLE.
arXiv Detail & Related papers (2022-11-17T13:01:26Z) - Superdiffusion in random two dimensional system with time-reversal symmetry and long-range hopping [45.873301228345696]
localization problem in the crossover regime for the dimension $d=2$ and hopping $V(r) propto r-2$ is not resolved yet.
We show that for the hopping determined by two-dimensional anisotropic dipole-dipole interactions there exist two distinguishable phases at weak and strong disorder.
arXiv Detail & Related papers (2022-05-29T16:53:20Z) - Averaging method and coherence applied to Rabi oscillations in a
two-level system [0.0]
We study Rabi oscillations in a two-level system within the semiclassical approximation as an archetype test field of the Averaging Method (AM)
We compare AM predictions with the rotating wave approximation (RWA) and with the complete numerical solution utilizing standard algorithms (NRWA)
arXiv Detail & Related papers (2021-05-25T15:45:01Z) - Phase transitions in a non-Hermitian Aubry-Andr\'e-Harper model [0.0]
We consider a non-Hermitian extension of the Aubry-Andr'e-Harper model, in which hopping along the lattice is asymmetric.
We show that the ballistic velocity can increase as $V$ is increased above zero, i.e. surprisingly disorder in the lattice can result in an enhancement of transport.
arXiv Detail & Related papers (2021-02-18T08:27:10Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Ballistic propagation of a local impact in the one-dimensional $XY$
model [0.0]
Light-cone-like propagation of information is a universal phenomenon of nonequilibrium dynamics of integrable spin systems.
We numerically observe various types of light-cone-like propagation in the parameter region $0leqgammaleq1$ and $0leq2$ of the model.
arXiv Detail & Related papers (2020-07-03T04:07:10Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.