Prior Normality Prompt Transformer for Multi-class Industrial Image Anomaly Detection
- URL: http://arxiv.org/abs/2406.11507v1
- Date: Mon, 17 Jun 2024 13:10:04 GMT
- Title: Prior Normality Prompt Transformer for Multi-class Industrial Image Anomaly Detection
- Authors: Haiming Yao, Yunkang Cao, Wei Luo, Weihang Zhang, Wenyong Yu, Weiming Shen,
- Abstract summary: We introduce Prior Normality Prompt Transformer (PNPT) for multi-class anomaly detection.
PNPT strategically incorporates normal semantics prompting to mitigate the "identical mapping" problem.
This entails integrating a prior normality prompt into the reconstruction process, yielding a dual-stream model.
- Score: 6.865429486202104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image anomaly detection plays a pivotal role in industrial inspection. Traditional approaches often demand distinct models for specific categories, resulting in substantial deployment costs. This raises concerns about multi-class anomaly detection, where a unified model is developed for multiple classes. However, applying conventional methods, particularly reconstruction-based models, directly to multi-class scenarios encounters challenges such as identical shortcut learning, hindering effective discrimination between normal and abnormal instances. To tackle this issue, our study introduces the Prior Normality Prompt Transformer (PNPT) method for multi-class image anomaly detection. PNPT strategically incorporates normal semantics prompting to mitigate the "identical mapping" problem. This entails integrating a prior normality prompt into the reconstruction process, yielding a dual-stream model. This innovative architecture combines normal prior semantics with abnormal samples, enabling dual-stream reconstruction grounded in both prior knowledge and intrinsic sample characteristics. PNPT comprises four essential modules: Class-Specific Normality Prompting Pool (CS-NPP), Hierarchical Patch Embedding (HPE), Semantic Alignment Coupling Encoding (SACE), and Contextual Semantic Conditional Decoding (CSCD). Experimental validation on diverse benchmark datasets and real-world industrial applications highlights PNPT's superior performance in multi-class industrial anomaly detection.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
We introduce a Multi-class Implicit Neural representation Transformer for unified Anomaly Detection (MINT-AD)
By learning the multi-class distributions, the model generates class-aware query embeddings for the transformer decoder.
MINT-AD can project category and position information into a feature embedding space, further supervised by classification and prior probability loss functions.
arXiv Detail & Related papers (2024-03-21T08:08:31Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
We propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems.
Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors.
We revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset.
arXiv Detail & Related papers (2024-01-15T12:51:13Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Hierarchical Vector Quantized Transformer for Multi-class Unsupervised
Anomaly Detection [24.11900895337062]
Unsupervised image Anomaly Detection (UAD) aims to learn robust and discriminative representations of normal samples.
This paper focuses on building a unified framework for multiple classes.
arXiv Detail & Related papers (2023-10-22T08:20:33Z) - Generalizable Industrial Visual Anomaly Detection with Self-Induction
Vision Transformer [5.116033262865781]
We propose a self-induction vision Transformer (SIVT) for unsupervised generalizable industrial visual anomaly detection and localization.
The proposed SIVT first extracts discriminatory features from pre-trained CNN as property descriptors, then reconstructs the extracted features in a self-supervisory fashion.
The results reveal that the proposed method can advance state-of-the-art detection performance with an improvement of 2.8-6.3 in AUROC, and 3.3-7.6 in AP.
arXiv Detail & Related papers (2022-11-22T14:56:12Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Few-shot Deep Representation Learning based on Information Bottleneck
Principle [0.0]
In a standard anomaly detection problem, a detection model is trained in an unsupervised setting, under an assumption that the samples were generated from a single source of normal data.
In practice, normal data often consist of multiple classes. In such settings, learning to differentiate between normal instances and anomalies among discrepancies between normal classes without large-scale labeled data presents a significant challenge.
In this work, we attempt to overcome this challenge by preparing few examples from each normal class, which is not excessively costly.
arXiv Detail & Related papers (2021-11-25T07:15:12Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.