Hard-normal Example-aware Template Mutual Matching for Industrial Anomaly Detection
- URL: http://arxiv.org/abs/2303.16191v5
- Date: Tue, 10 Dec 2024 10:31:26 GMT
- Title: Hard-normal Example-aware Template Mutual Matching for Industrial Anomaly Detection
- Authors: Zixuan Chen, Xiaohua Xie, Lingxiao Yang, Jianhuang Lai,
- Abstract summary: Anomaly detectors are widely used in industrial manufacturing to detect and localize unknown defects in query images.
These detectors are trained on anomaly-free samples and have successfully distinguished anomalies from most normal samples.
However, hard-normal examples are scattered and far apart from most normal samples, and thus they are often mistaken for anomalies by existing methods.
- Score: 78.734927709231
- License:
- Abstract: Anomaly detectors are widely used in industrial manufacturing to detect and localize unknown defects in query images. These detectors are trained on anomaly-free samples and have successfully distinguished anomalies from most normal samples. However, hard-normal examples are scattered and far apart from most normal samples, and thus they are often mistaken for anomalies by existing methods. To address this issue, we propose Hard-normal Example-aware Template Mutual Matching (HETMM), an efficient framework to build a robust prototype-based decision boundary. Specifically, HETMM employs the proposed Affine-invariant Template Mutual Matching (ATMM) to mitigate the affection brought by the affine transformations and easy-normal examples. By mutually matching the pixel-level prototypes within the patch-level search spaces between query and template set, ATMM can accurately distinguish between hard-normal examples and anomalies, achieving low false-positive and missed-detection rates. In addition, we also propose PTS to compress the original template set for speed-up. PTS selects cluster centres and hard-normal examples to preserve the original decision boundary, allowing this tiny set to achieve comparable performance to the original one. Extensive experiments demonstrate that HETMM outperforms state-of-the-art methods, while using a 60-sheet tiny set can achieve competitive performance and real-time inference speed (around 26.1 FPS) on a Quadro 8000 RTX GPU. HETMM is training-free and can be hot-updated by directly inserting novel samples into the template set, which can promptly address some incremental learning issues in industrial manufacturing.
Related papers
- Prior Normality Prompt Transformer for Multi-class Industrial Image Anomaly Detection [6.865429486202104]
We introduce Prior Normality Prompt Transformer (PNPT) for multi-class anomaly detection.
PNPT strategically incorporates normal semantics prompting to mitigate the "identical mapping" problem.
This entails integrating a prior normality prompt into the reconstruction process, yielding a dual-stream model.
arXiv Detail & Related papers (2024-06-17T13:10:04Z) - MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection [0.0]
A new meth-odology for detecting surface defects in in-dustrial settings is introduced, referred to as Memory Augmentation and Pseudo-Labeling(MAPL)
The methodology first in-troduces an anomaly simulation strategy, which significantly improves the model's ability to recognize rare or unknown anom-aly types.
An end-to-end learning framework is employed by MAPL to identify the abnormal regions directly from the input data.
arXiv Detail & Related papers (2024-05-10T02:26:35Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
arXiv Detail & Related papers (2023-07-16T14:41:22Z) - One-Dimensional Deep Image Prior for Curve Fitting of S-Parameters from
Electromagnetic Solvers [57.441926088870325]
Deep Image Prior (DIP) is a technique that optimized the weights of a randomly-d convolutional neural network to fit a signal from noisy or under-determined measurements.
Relative to publicly available implementations of Vector Fitting (VF), our method shows superior performance on nearly all test examples.
arXiv Detail & Related papers (2023-06-06T20:28:37Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images.
PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding.
It also exploits correlations between the different semantic levels of CNN to better localize anomalies.
arXiv Detail & Related papers (2020-11-17T17:29:18Z) - G2D: Generate to Detect Anomaly [10.977404378308817]
We learn two deep neural networks (generator and discriminator) in a GAN-style setting on merely the normal samples.
In the training phase, when the generator fails to produce normal data, it can be considered as an irregularity generator.
We train a binary classifier on the generated anomalous samples along with the normal instances in order to be capable of detecting irregularities.
arXiv Detail & Related papers (2020-06-20T18:02:50Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.