論文の概要: RO-SVD: A Reconfigurable Hardware Copyright Protection Framework for AIGC Applications
- arxiv url: http://arxiv.org/abs/2406.11536v2
- Date: Mon, 02 Dec 2024 13:20:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:03.627500
- Title: RO-SVD: A Reconfigurable Hardware Copyright Protection Framework for AIGC Applications
- Title(参考訳): RO-SVD:AIGCアプリケーションのための再構成可能なハードウェア著作権保護フレームワーク
- Authors: Zhuoheng Ran, Muhammad A. A. Abdelgawad, Zekai Zhang, Ray C. C. Cheung, Hong Yan,
- Abstract要約: AIコンテンツのためのブロックチェーンベースの著作権トレーサビリティフレームワークを提案する。
我々のフレームワークは、既存のAIアクセラレーションデバイスで簡単に構築できる。
これは、AI生成コンテンツに特化した著作権トレーサビリティを議論し、実装する最初の実用的なハードウェア研究である。
- 参考スコア(独自算出の注目度): 7.368978400783039
- License:
- Abstract: The dramatic surge in the utilisation of generative artificial intelligence (GenAI) underscores the need for a secure and efficient mechanism to responsibly manage, use and disseminate multi-dimensional data generated by artificial intelligence (AI). In this paper, we propose a blockchain-based copyright traceability framework called ring oscillator-singular value decomposition (RO-SVD), which introduces decomposition computing to approximate low-rank matrices generated from hardware entropy sources and establishes an AI-generated content (AIGC) copyright traceability mechanism at the device level. By leveraging the parallelism and reconfigurability of field-programmable gate arrays (FPGAs), our framework can be easily constructed on existing AI-accelerated devices and provide a low-cost solution to emerging copyright issues of AIGC. We developed a hardware-software (HW/SW) co-design prototype based on comprehensive analysis and on-board experiments with multiple AI-applicable FPGAs. Using AI-generated images as a case study, our framework demonstrated effectiveness and emphasised customisation, unpredictability, efficiency, management and reconfigurability. To the best of our knowledge, this is the first practical hardware study discussing and implementing copyright traceability specifically for AI-generated content.
- Abstract(参考訳): 生成人工知能(GenAI)の利用の劇的な増加は、人工知能(AI)によって生成された多次元データを責任を持って管理、使用、分散するためのセキュアで効率的なメカニズムの必要性を浮き彫りにしている。
本稿では,ハードウェアエントロピーソースから生成された低ランク行列を近似する分解計算を導入し,デバイスレベルでAIGC(AIGC)著作権トレーサビリティ機構を確立する,リング発振器・特異値分解(RO-SVD)と呼ばれるブロックチェーンベースの著作権トレーサビリティフレームワークを提案する。
フィールドプログラマブルゲートアレイ(FPGA)の並列性と再構成性を活用することで、既存のAIアクセラレーションデバイス上で容易に構築でき、AIGCの著作権問題に対する低コストなソリューションを提供することができる。
ハードウェア・ソフトウェア(HW/SW)の共同設計プロトタイプを開発した。
AI生成イメージをケーススタディとして、我々のフレームワークは、有効性を示し、カスタマイズ、予測不能性、効率性、管理、再構成性を強調した。
我々の知る限りでは、これはAI生成コンテンツに特化した著作権トレーサビリティを議論し、実装する最初の実用的なハードウェア研究である。
関連論文リスト
- Generative AI Application for Building Industry [10.154329382433213]
本稿では,建築産業における生成型AI技術,特に大規模言語モデル(LLM)の変容の可能性について検討する。
この研究は、LLMがいかに労働集約的なプロセスを自動化し、建築プラクティスの効率、正確性、安全性を大幅に改善できるかを強調している。
論文 参考訳(メタデータ) (2024-10-01T21:59:08Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Over the Edge of Chaos? Excess Complexity as a Roadblock to Artificial General Intelligence [4.901955678857442]
我々は、AIの性能が臨界複雑性しきい値を超えると不安定になるかもしれない複雑なシステムにおける位相遷移に類似した臨界点の存在を仮定した。
我々のシミュレーションは、AIシステムの複雑さの増加が、より高い臨界閾値を超え、予測不可能なパフォーマンス行動を引き起こすことを実証した。
論文 参考訳(メタデータ) (2024-07-04T05:46:39Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs [14.397623940689487]
Graphcore Intelligence Processing Unit (IPU)、Sambanova Reconfigurable Dataflow Unit (RDU)、拡張GPUプラットフォームについてレビューする。
この研究は、これらの商用AI/MLアクセラレータの予備評価と比較を提供する。
論文 参考訳(メタデータ) (2023-11-08T01:06:25Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Tools and Practices for Responsible AI Engineering [0.5249805590164901]
我々は、責任あるAIエンジニアリングに対する重要なニーズに対処する2つの新しいソフトウェアライブラリを提示する。
hydra-zenは、複雑なAIアプリケーションとその振る舞いを再現するプロセスを劇的に単純化する。
rAI-toolboxは、AIモデルの堅牢性を評価し、拡張する方法を可能にするように設計されている。
論文 参考訳(メタデータ) (2022-01-14T19:47:46Z) - How to Reach Real-Time AI on Consumer Devices? Solutions for
Programmable and Custom Architectures [7.085772863979686]
ディープニューラルネットワーク(DNN)は、オブジェクトや音声認識など、さまざまな人工知能(AI)推論タスクにおいて大きな進歩をもたらした。
このようなAIモデルをコモディティデバイスにデプロイすることは、大きな課題に直面している。
クロススタック手法によりリアルタイムな性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2021-06-21T11:23:12Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。