Quaternion Generative Adversarial Neural Networks and Applications to Color Image Inpainting
- URL: http://arxiv.org/abs/2406.11567v1
- Date: Mon, 17 Jun 2024 14:04:17 GMT
- Title: Quaternion Generative Adversarial Neural Networks and Applications to Color Image Inpainting
- Authors: Duan Wang, Dandan Zhu, Meixiang Zhao, Zhigang Jia,
- Abstract summary: This paper proposes a Quaternion Geneversarative Adrial Neural Network (QGAN) model and related theory to solve the problem of color image inpainting with large area missing.
The experimental results show that QGAN has superiority in color image inpainting with large area missing.
- Score: 2.9409095383085386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Color image inpainting is a challenging task in imaging science. The existing method is based on real operation, and the red, green and blue channels of the color image are processed separately, ignoring the correlation between each channel. In order to make full use of the correlation between each channel, this paper proposes a Quaternion Generative Adversarial Neural Network (QGAN) model and related theory, and applies it to solve the problem of color image inpainting with large area missing. Firstly, the definition of quaternion deconvolution is given and the quaternion batch normalization is proposed. Secondly, the above two innovative modules are applied to generate adversarial networks to improve stability. Finally, QGAN is applied to color image inpainting and compared with other state-of-the-art algorithms. The experimental results show that QGAN has superiority in color image inpainting with large area missing.
Related papers
- A New Cross-Space Total Variation Regularization Model for Color Image Restoration with Quaternion Blur Operator [20.00683294783224]
Cross-channel deblurring problem in color image processing is difficult to solve due to complex coupling and structural blurring of color pixels.
We present a novel cross-space total variation (CSTV) regularization model for color image deblurring.
New L-curve method is proposed to find a sweet balance of regularization functionals on different color spaces.
arXiv Detail & Related papers (2024-05-20T15:29:26Z) - MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior [65.05773512126089]
NeRF inpainting methods built upon explicit RGB and depth 2D inpainting supervisions are inherently constrained by the capabilities of their underlying 2D inpainters.
We propose MVIP-NeRF that harnesses the potential of diffusion priors for NeRF inpainting, addressing both appearance and geometry aspects.
Our experimental results show better appearance and geometry recovery than previous NeRF inpainting methods.
arXiv Detail & Related papers (2024-05-05T09:04:42Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
We argue that domain gaps can also be caused by different foreground (nucleus)-background ratios.
First, we introduce a re-coloring method that relieves dramatic image color variations between different domains.
Second, we propose a new instance normalization method that is robust to the variation in the foreground-background ratios.
arXiv Detail & Related papers (2023-09-01T01:01:13Z) - Quasi Non-Negative Quaternion Matrix Factorization with Application to
Color Face Recognition [0.0]
A novel quasi-negative quaternion matrix factorization (QNQMF) is presented for color image processing.
The accuracy of the rate of face recognition on the quaternion model is better than on the red, green and blue channels of color image.
arXiv Detail & Related papers (2022-11-30T04:51:09Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
Image recoloring is an emerging editing technique that can manipulate the color values of an image to give it a new style.
In this paper, we explore a solution from the perspective of the spatial correlation, which exhibits the generic detection capability for both conventional and deep learning-based recoloring.
Our method achieves the state-of-the-art detection accuracy on multiple benchmark datasets and exhibits well generalization for unknown types of recoloring methods.
arXiv Detail & Related papers (2022-04-23T01:54:06Z) - Astronomical Image Colorization and upscaling with Generative
Adversarial Networks [0.0]
This research aims to provide an automated approach for the problem by focusing on a very specific domain of images, namely astronomical images.
We explore the usage of various models in two different color spaces, RGB and L*a*b.
The model produces visually appealing images which hallucinate high resolution, colorized data in these results which does not exist in the original image.
arXiv Detail & Related papers (2021-12-27T19:01:20Z) - Semantic-Sparse Colorization Network for Deep Exemplar-based
Colorization [23.301799487207035]
Exemplar-based colorization approaches rely on reference image to provide plausible colors for target gray-scale image.
We propose Semantic-Sparse Colorization Network (SSCN) to transfer both the global image style and semantic-related colors to the gray-scale image.
Our network can perfectly balance the global and local colors while alleviating the ambiguous matching problem.
arXiv Detail & Related papers (2021-12-02T15:35:10Z) - HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color
Histograms [52.77252727786091]
HistoGAN is a color histogram-based method for controlling GAN-generated images' colors.
We show how to expand HistoGAN to recolor real images.
arXiv Detail & Related papers (2020-11-23T21:14:19Z) - Full Quaternion Representation of Color images: A Case Study on
QSVD-based Color Image Compression [0.38073142980732994]
We propose an approach for representing color images with full quaternion numbers.
An autoencoder neural network is used to generate a global model for transforming a color image into a full quaternion matrix.
arXiv Detail & Related papers (2020-07-19T19:13:21Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
We propose a color quantization network, ColorCNN, which learns to structure the images from the classification loss in an end-to-end manner.
With only a 1-bit color space (i.e., two colors), the proposed network achieves 82.1% top-1 accuracy on the CIFAR10 dataset.
For applications, when encoded with PNG, the proposed color quantization shows superiority over other image compression methods in the extremely low bit-rate regime.
arXiv Detail & Related papers (2020-03-17T17:56:15Z) - Very Long Natural Scenery Image Prediction by Outpainting [96.8509015981031]
Outpainting receives less attention due to two challenges in it.
First challenge is how to keep the spatial and content consistency between generated images and original input.
Second challenge is how to maintain high quality in generated results.
arXiv Detail & Related papers (2019-12-29T16:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.