A New Cross-Space Total Variation Regularization Model for Color Image Restoration with Quaternion Blur Operator
- URL: http://arxiv.org/abs/2405.12114v1
- Date: Mon, 20 May 2024 15:29:26 GMT
- Title: A New Cross-Space Total Variation Regularization Model for Color Image Restoration with Quaternion Blur Operator
- Authors: Zhigang Jia, Yuelian Xiang, Meixiang Zhao, Tingting Wu, Michael K. Ng,
- Abstract summary: Cross-channel deblurring problem in color image processing is difficult to solve due to complex coupling and structural blurring of color pixels.
We present a novel cross-space total variation (CSTV) regularization model for color image deblurring.
New L-curve method is proposed to find a sweet balance of regularization functionals on different color spaces.
- Score: 20.00683294783224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The cross-channel deblurring problem in color image processing is difficult to solve due to the complex coupling and structural blurring of color pixels. Until now, there are few efficient algorithms that can reduce color infection in deblurring process. To solve this challenging problem, we present a novel cross-space total variation (CSTV) regularization model for color image deblurring by introducing a quaternion blur operator and a cross-color space regularization functional. The existence and uniqueness of the solution is proved and a new L-curve method is proposed to find a sweet balance of regularization functionals on different color spaces. The Euler-Lagrange equation is derived to show that CSTV has taken into account the coupling of all color channels and the local smoothing within each color channel. A quaternion operator splitting method is firstly proposed to enhance the ability of color infection reduction of the CSTV regularization model. This strategy also applies to the well-known color deblurring models. Numerical experiments on color image databases illustrate the efficiency and manoeuvrability of the new model and algorithms. The color images restored by them successfully maintain the color and spatial information and are of higher quality in terms of PSNR, SSIM, MSE and CIEde2000 than the restorations of the-state-of-the-art methods.
Related papers
- Quaternion Generative Adversarial Neural Networks and Applications to Color Image Inpainting [2.9409095383085386]
This paper proposes a Quaternion Geneversarative Adrial Neural Network (QGAN) model and related theory to solve the problem of color image inpainting with large area missing.
The experimental results show that QGAN has superiority in color image inpainting with large area missing.
arXiv Detail & Related papers (2024-06-17T14:04:17Z) - Color Equivariant Convolutional Networks [50.655443383582124]
CNNs struggle if there is data imbalance between color variations introduced by accidental recording conditions.
We propose Color Equivariant Convolutions ( CEConvs), a novel deep learning building block that enables shape feature sharing across the color spectrum.
We demonstrate the benefits of CEConvs in terms of downstream performance to various tasks and improved robustness to color changes, including train-test distribution shifts.
arXiv Detail & Related papers (2023-10-30T09:18:49Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
We argue that domain gaps can also be caused by different foreground (nucleus)-background ratios.
First, we introduce a re-coloring method that relieves dramatic image color variations between different domains.
Second, we propose a new instance normalization method that is robust to the variation in the foreground-background ratios.
arXiv Detail & Related papers (2023-09-01T01:01:13Z) - Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color
Image Denoising [9.20787253404652]
One traditional strategy is to convert the RGB image to a less correlated color space and denoise each channel of the new space separately.
This paper proposes a new multi-channel optimization model for color image denoising under the nuclear norm minus Frobenius norm minimization framework.
Experimental results on both synthetic and real noise datasets demonstrate the proposed model outperforms state-of-the-art models.
arXiv Detail & Related papers (2022-09-16T04:10:29Z) - Neural Color Operators for Sequential Image Retouching [62.99812889713773]
We propose a novel image retouching method by modeling the retouching process as performing a sequence of newly introduced trainable neural color operators.
The neural color operator mimics the behavior of traditional color operators and learns pixelwise color transformation while its strength is controlled by a scalar.
Our method consistently achieves the best results compared with SOTA methods in both quantitative measures and visual qualities.
arXiv Detail & Related papers (2022-07-17T05:33:19Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
Image recoloring is an emerging editing technique that can manipulate the color values of an image to give it a new style.
In this paper, we explore a solution from the perspective of the spatial correlation, which exhibits the generic detection capability for both conventional and deep learning-based recoloring.
Our method achieves the state-of-the-art detection accuracy on multiple benchmark datasets and exhibits well generalization for unknown types of recoloring methods.
arXiv Detail & Related papers (2022-04-23T01:54:06Z) - Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared
Person Re-Identification [84.32086702849338]
We propose a novel modality-adaptive mixup and invariant decomposition (MID) approach for RGB-infrared person re-identification.
MID designs a modality-adaptive mixup scheme to generate suitable mixed modality images between RGB and infrared images.
Experiments on two challenging benchmarks demonstrate superior performance of MID over state-of-the-art methods.
arXiv Detail & Related papers (2022-03-03T14:26:49Z) - Mitigating Channel-wise Noise for Single Image Super Resolution [33.383282898248076]
We propose to super-resolve noisy color images by considering the color channels jointly.
Results demonstrate the super-resolving capability of the approach in real scenarios.
arXiv Detail & Related papers (2021-12-14T17:45:15Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
We present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor.
Our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding.
arXiv Detail & Related papers (2021-04-27T07:35:30Z) - A spatial hue similarity measure for assessment of colourisation [0.0]
We use polar form of the a*b* channels from the CIEL*a*b* colour space to separate the multi-modal problems.
We apply SSIM to the chroma channel but reformulate SSIM for the hue channel to a measure we call the Spatial Hue Similarity Measure (SHSM)
This reformulation allows spatially-coherent hue channels to achieve a high score while penalising spatially-incoherent modes.
arXiv Detail & Related papers (2020-11-03T13:43:36Z) - Full Quaternion Representation of Color images: A Case Study on
QSVD-based Color Image Compression [0.38073142980732994]
We propose an approach for representing color images with full quaternion numbers.
An autoencoder neural network is used to generate a global model for transforming a color image into a full quaternion matrix.
arXiv Detail & Related papers (2020-07-19T19:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.