Towards an End-to-End Framework for Invasive Brain Signal Decoding with Large Language Models
- URL: http://arxiv.org/abs/2406.11568v1
- Date: Mon, 17 Jun 2024 14:04:18 GMT
- Title: Towards an End-to-End Framework for Invasive Brain Signal Decoding with Large Language Models
- Authors: Sheng Feng, Heyang Liu, Yu Wang, Yanfeng Wang,
- Abstract summary: We introduce a groundbreaking end-to-end (E2E) framework for decoding invasive brain signals.
Our findings underscore the immense potential of E2E frameworks in speech neuroprosthesis.
- Score: 24.54139799413152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a groundbreaking end-to-end (E2E) framework for decoding invasive brain signals, marking a significant advancement in the field of speech neuroprosthesis. Our methodology leverages the comprehensive reasoning abilities of large language models (LLMs) to facilitate direct decoding. By fully integrating LLMs, we achieve results comparable to the state-of-the-art cascade models. Our findings underscore the immense potential of E2E frameworks in speech neuroprosthesis, particularly as the technology behind brain-computer interfaces (BCIs) and the availability of relevant datasets continue to evolve. This work not only showcases the efficacy of combining LLMs with E2E decoding for enhancing speech neuroprosthesis but also sets a new direction for future research in BCI applications, underscoring the impact of LLMs in decoding complex neural signals for communication restoration. Code will be made available at https://github.com/FsFrancis15/BrainLLM.
Related papers
- BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation [29.78480739360263]
We propose a new multi-stage strategy for semantic brain signal decoding via vEctor-quantized speCtrogram reconstruction.
BrainECHO successively conducts: 1) autoencoding of the audio spectrogram; 2) Brain-audio latent space alignment; and 3) Semantic text generation via Whisper finetuning.
BrainECHO outperforms state-of-the-art methods under the same data split settings on two widely accepted resources.
arXiv Detail & Related papers (2024-10-19T04:29:03Z) - A multimodal LLM for the non-invasive decoding of spoken text from brain recordings [0.4187344935012482]
We propose and end-to-end multimodal LLM for decoding spoken text from fMRI signals.
The proposed architecture is founded on (i) an encoder derived from a specific transformer incorporating an augmented embedding layer for the encoder and a better-adjusted attention mechanism than that present in the state of the art.
A benchmark in performed on a corpus consisting of a set of interactions human-human and human-robot interactions where fMRI and conversational signals are recorded synchronously.
arXiv Detail & Related papers (2024-09-29T14:03:39Z) - NeuroLM: A Universal Multi-task Foundation Model for Bridging the Gap between Language and EEG Signals [21.363722751437066]
We propose NeuroLM, the first multi-task foundation model that leverages the capabilities of Large Language Models (LLMs) by regarding EEG signals as a foreign language.
Our approach begins with learning a text-aligned neural tokenizer through vector-quantized temporal-frequency prediction, which encodes EEG signals into discrete neural tokens.
We are the first to demonstrate that, by specific incorporation with LLMs, NeuroLM unifies diverse EEG tasks within a single model through instruction tuning.
arXiv Detail & Related papers (2024-08-27T12:07:09Z) - Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings [27.418738450536047]
We propose a two-step pipeline for converting EEG signals into sentences.
We first confirm that word-level semantic information can be learned from EEG data recorded during natural reading.
We employ a training-free retrieval method to retrieve sentences based on the predictions from the EEG encoder.
arXiv Detail & Related papers (2024-08-08T03:40:25Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - MAD: Multi-Alignment MEG-to-Text Decoding [21.155031900491654]
We present a novel approach for translating MEG signals into text using a speech-decoding framework with multiple alignments.
We achieve an impressive BLEU-1 score on the $textitGWilliams$ dataset, significantly outperforming the baseline from 5.49 to 10.44 on the BLEU-1 metric.
arXiv Detail & Related papers (2024-06-03T16:43:10Z) - Bidirectional Trained Tree-Structured Decoder for Handwritten
Mathematical Expression Recognition [51.66383337087724]
The Handwritten Mathematical Expression Recognition (HMER) task is a critical branch in the field of OCR.
Recent studies have demonstrated that incorporating bidirectional context information significantly improves the performance of HMER models.
We propose the Mirror-Flipped Symbol Layout Tree (MF-SLT) and Bidirectional Asynchronous Training (BAT) structure.
arXiv Detail & Related papers (2023-12-31T09:24:21Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
We propose the In-context Autoencoder (ICAE) to compress a long context into short compact memory slots.
ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data.
arXiv Detail & Related papers (2023-07-13T17:59:21Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMA is a novel approach that effectively incorporates acoustic information into text-based large language models.
We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines.
arXiv Detail & Related papers (2023-07-08T06:47:58Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.