Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings
- URL: http://arxiv.org/abs/2408.04679v1
- Date: Thu, 8 Aug 2024 03:40:25 GMT
- Title: Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings
- Authors: Jinzhao Zhou, Yiqun Duan, Ziyi Zhao, Yu-Cheng Chang, Yu-Kai Wang, Thomas Do, Chin-Teng Lin,
- Abstract summary: We propose a two-step pipeline for converting EEG signals into sentences.
We first confirm that word-level semantic information can be learned from EEG data recorded during natural reading.
We employ a training-free retrieval method to retrieve sentences based on the predictions from the EEG encoder.
- Score: 27.418738450536047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decoding linguistic information from non-invasive brain signals using EEG has gained increasing research attention due to its vast applicational potential. Recently, a number of works have adopted a generative-based framework to decode electroencephalogram (EEG) signals into sentences by utilizing the power generative capacity of pretrained large language models (LLMs). However, this approach has several drawbacks that hinder the further development of linguistic applications for brain-computer interfaces (BCIs). Specifically, the ability of the EEG encoder to learn semantic information from EEG data remains questionable, and the LLM decoder's tendency to generate sentences based on its training memory can be hard to avoid. These issues necessitate a novel approach for converting EEG signals into sentences. In this paper, we propose a novel two-step pipeline that addresses these limitations and enhances the validity of linguistic EEG decoding research. We first confirm that word-level semantic information can be learned from EEG data recorded during natural reading by training a Conformer encoder via a masked contrastive objective for word-level classification. To achieve sentence decoding results, we employ a training-free retrieval method to retrieve sentences based on the predictions from the EEG encoder. Extensive experiments and ablation studies were conducted in this paper for a comprehensive evaluation of the proposed approach. Visualization of the top prediction candidates reveals that our model effectively groups EEG segments into semantic categories with similar meanings, thereby validating its ability to learn patterns from unspoken EEG recordings. Despite the exploratory nature of this work, these results suggest that our method holds promise for providing more reliable solutions for converting EEG signals into text.
Related papers
- SEE: Semantically Aligned EEG-to-Text Translation [5.460650382586978]
Decoding neurophysiological signals into language is of great research interest within brain-computer interface (BCI) applications.
Current EEG-to-Text decoding approaches face challenges due to the huge domain gap between EEG recordings and raw texts.
We propose SEE: Semantically Aligned EEG-to-Text Translation, a novel method aimed at improving EEG-to-Text decoding.
arXiv Detail & Related papers (2024-09-14T05:37:15Z) - EEG decoding with conditional identification information [7.873458431535408]
Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces.
Traditional machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals.
Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling capabilities.
arXiv Detail & Related papers (2024-03-21T13:38:59Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
We propose Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text.
We also develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations) to decode text from EEG sequences.
arXiv Detail & Related papers (2024-02-27T11:45:21Z) - CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
A key aim in EEG analysis is to extract the underlying neural activation (content) as well as to account for the individual subject variability (style)
Inspired by recent advancements in voice conversion technologies, we propose a novel contrastive split-latent permutation autoencoder (CSLP-AE) framework that directly optimize for EEG conversion.
arXiv Detail & Related papers (2023-11-13T22:46:43Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Diff-E: Diffusion-based Learning for Decoding Imagined Speech EEG [17.96977778655143]
We propose a novel method for decoding EEG signals for imagined speech using DDPMs and a conditional autoencoder named Diff-E.
Results indicate that Diff-E significantly improves the accuracy of decoding EEG signals for imagined speech compared to traditional machine learning techniques and baseline models.
arXiv Detail & Related papers (2023-07-26T07:12:39Z) - Hierarchical Sketch Induction for Paraphrase Generation [79.87892048285819]
We introduce Hierarchical Refinement Quantized Variational Autoencoders (HRQ-VAE), a method for learning decompositions of dense encodings.
We use HRQ-VAE to encode the syntactic form of an input sentence as a path through the hierarchy, allowing us to more easily predict syntactic sketches at test time.
arXiv Detail & Related papers (2022-03-07T15:28:36Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Decoding EEG Brain Activity for Multi-Modal Natural Language Processing [9.35961671939495]
We present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks.
We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal.
For a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines.
arXiv Detail & Related papers (2021-02-17T09:44:21Z) - Learning Patterns in Imaginary Vowels for an Intelligent Brain Computer
Interface (BCI) Design [0.0]
We propose a modular framework for the recognition of vowels as the AI part of a brain computer interface system.
We carefully designed the modules to discriminate the English vowels given the raw EEG signals.
We provide the algorithms of the proposed framework to make it easy for future researchers and developers who want to follow the same workflow.
arXiv Detail & Related papers (2020-10-17T06:10:10Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.