論文の概要: Non-unitary Coupled Cluster on Gate-based Quantum Computers
- arxiv url: http://arxiv.org/abs/2406.11574v1
- Date: Mon, 17 Jun 2024 14:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 14:32:20.228011
- Title: Non-unitary Coupled Cluster on Gate-based Quantum Computers
- Title(参考訳): ゲート型量子コンピュータにおける非単体結合クラスタ
- Authors: Alexandre Fleury, James Brown, Erika Lloyd, Maritza Hernandez, Isaac H. Kim,
- Abstract要約: 本稿では,古典計算機における量子化学の柱である結合クラスタ(CC)理論に基づく状態準備法を提案する。
提案手法は,従来の計算オーバーヘッドを低減し,CNOTおよびTゲートの数を平均で28%,57%削減する。
- 参考スコア(独自算出の注目度): 37.69303106863453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many quantum algorithms rely on a quality initial state for optimal performance. Preparing an initial state for specific applications can considerably reduce the cost of probabilistic algorithms such as the well studied quantum phase estimation (QPE). Fortunately, in the application space of quantum chemistry, generating approximate wave functions for molecular systems is well studied, and quantum computing algorithms stand to benefit from importing these classical methods directly into a quantum circuit. In this work, we propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers, by incorporating mid-circuit measurements into the circuit construction. Currently, the most well studied state preparation method for quantum chemistry on quantum computers is the variational quantum eigensolver (VQE) with a unitary-CC with single- and double-electron excitation terms (UCCSD) ansatz whose operations are limited to unitary gates. We verify the accuracy of our state preparation protocol using mid-circuit measurements by performing energy evaluation and state overlap computation for a set of small chemical systems. We further demonstrate that our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average when compared against the standard VQE-UCCSD protocol.
- Abstract(参考訳): 多くの量子アルゴリズムは最適な性能のために品質の初期状態に依存している。
特定の用途に初期状態を用意することで、よく研究された量子位相推定(QPE)のような確率論的アルゴリズムのコストを大幅に削減することができる。
幸いなことに、量子化学の応用分野では、分子系の近似波動関数の生成がよく研究されており、量子コンピューティングアルゴリズムはこれらの古典的な手法を直接量子回路にインポートする利点がある。
本研究では,古典計算機における量子化学の柱である結合クラスタ(CC)理論に基づく状態準備法を提案する。
現在、量子コンピュータ上での量子化学のための最もよく研究されている状態合成法は、単一および二重電子励起項(UCCSD)アンサッツを持つユニタリCCを持つ変分量子固有解法(VQE)である。
小型化学系のエネルギー評価と状態重なり計算を行うことにより, 中間回路計測による状態生成プロトコルの精度を検証した。
さらに,従来のVQE-UCCSDプロトコルと比較すると,従来の計算オーバーヘッドが減少し,CNOTおよびTゲートの数は平均で28%,57%減少した。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Mapping quantum circuits to shallow-depth measurement patterns based on
graph states [0.0]
我々は,測定に基づく量子コンピューティングのためのハイブリッドシミュレーション手法を開発した。
完全可換作用素の群は完全並列、すなわち非適応的測定を用いて実装可能であることを示す。
量子テレポーテーションを用いることで、そのような回路を一定の量子深さで実装する方法について議論する。
論文 参考訳(メタデータ) (2023-11-27T19:00:00Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
原理として、指数関数的にスケールする多電子波関数を線形にスケールする量子ビットレジスタに符号化することは、従来の量子化学法の限界を克服するための有望な解決策を提供する。
基底状態量子アルゴリズムが実用的であるためには、量子ビットの初期化が要求される基底状態の高品質な近似に必須である。
量子状態準備(QSP)は、古典的な計算から得られる近似固有状態の生成を可能にするが、量子情報のオラクルとして頻繁に扱われる。
論文 参考訳(メタデータ) (2023-11-06T18:53:50Z) - Probing Quantum Efficiency: Exploring System Hardness in Electronic
Ground State Energy Estimation [0.0]
電子構造理論の古典的アルゴリズムと量子アルゴリズムの相関性について考察する。
量子アルゴリズムでは,変分量子固有解法 (VQE) と量子位相推定法 (QPE) を選択した。
論文 参考訳(メタデータ) (2023-10-31T20:07:15Z) - State preparation in quantum algorithms for fragment-based quantum
chemistry [0.0]
量子アルゴリズムの状態準備は、量子化学において高い精度を達成するために不可欠である。
量子位相推定(QPE)と直接初期化(DI)の2つの状態準備法を比較した。
一方、QPEはより大きなフラグメントに対してより効率的であるのに対して、DIでは小さなフラグメントに対してリソースが少なくなります。
論文 参考訳(メタデータ) (2023-05-29T14:25:15Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Reducing Unitary Coupled Cluster Circuit Depth by Classical Stochastic
Amplitude Pre-Screening [0.0]
Unitary Coupled Cluster (UCC)アプローチは、量子化学計算を実行するために量子ハードウェアを利用するための魅力的な方法である。
本稿では,従来のUCC前処理ステップを用いてUCCアンサッツの重要な励起を判定する,古典量子と古典量子の併用手法を提案する。
論文 参考訳(メタデータ) (2021-08-24T18:34:14Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
本稿では、分子の全電子エネルギーと古典的コンピュータ上の特性を計算できる新しいハイブリッド古典的アルゴリズムを提案する。
本稿では,現在利用可能な量子コンピュータ上で,化学的に関連性のある結果と精度を実現する量子古典ハイブリッドアルゴリズムの能力を実証する。
論文 参考訳(メタデータ) (2021-06-22T18:00:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。