Harmonizing Feature Maps: A Graph Convolutional Approach for Enhancing Adversarial Robustness
- URL: http://arxiv.org/abs/2406.11576v1
- Date: Mon, 17 Jun 2024 14:10:45 GMT
- Title: Harmonizing Feature Maps: A Graph Convolutional Approach for Enhancing Adversarial Robustness
- Authors: Kejia Zhang, Juanjuan Weng, Junwei Wu, Guoqing Yang, Shaozi Li, Zhiming Luo,
- Abstract summary: adversarial perturbations can contaminate the feature space and lead to incorrect predictions.
We introduce an innovative plug-and-play module called Feature Map-based Reconstructed Graph Convolution (FMR-GC)
Experiments have demonstrated the superior performance and scalability of FMR-GC.
- Score: 22.29700366929259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vulnerability of Deep Neural Networks to adversarial perturbations presents significant security concerns, as the imperceptible perturbations can contaminate the feature space and lead to incorrect predictions. Recent studies have attempted to calibrate contaminated features by either suppressing or over-activating particular channels. Despite these efforts, we claim that adversarial attacks exhibit varying disruption levels across individual channels. Furthermore, we argue that harmonizing feature maps via graph and employing graph convolution can calibrate contaminated features. To this end, we introduce an innovative plug-and-play module called Feature Map-based Reconstructed Graph Convolution (FMR-GC). FMR-GC harmonizes feature maps in the channel dimension to reconstruct the graph, then employs graph convolution to capture neighborhood information, effectively calibrating contaminated features. Extensive experiments have demonstrated the superior performance and scalability of FMR-GC. Moreover, our model can be combined with advanced adversarial training methods to considerably enhance robustness without compromising the model's clean accuracy.
Related papers
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs using low dimensional features and attention-based neural networks [3.6270672925388263]
A trained attention-based transformer network can robustly recover the complex topologies given by the Richtmyer-Meshkoff instability.
This approach is demonstrated on ICF-like double shell hydrodynamic simulations.
arXiv Detail & Related papers (2024-08-02T03:02:39Z) - Modularity aided consistent attributed graph clustering via coarsening [6.522020196906943]
Graph clustering is an important unsupervised learning technique for partitioning graphs with attributes and detecting communities.
We propose a loss function incorporating log-determinant, smoothness, and modularity components using a block majorization-minimization technique.
Our algorithm seamlessly integrates graph neural networks (GNNs) and variational graph autoencoders (VGAEs) to learn enhanced node features and deliver exceptional clustering performance.
arXiv Detail & Related papers (2024-07-09T10:42:19Z) - Feature graph construction with static features for malware detection [2.6148103955115043]
We introduce a feature graph-based malware detection method, MFGraph, to characterize applications.
We demonstrate that it achieves an AUC score of 0.98756 on the malware detection task, outperforming other baseline models.
The AUC score of MFGraph decreases by only 5.884% in one year, indicating that it is the least affected by concept drift.
arXiv Detail & Related papers (2024-04-25T06:54:32Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority.
We propose a novel few-shot Graph Anomaly Detection model called FMGAD.
We show that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
arXiv Detail & Related papers (2023-11-17T07:49:20Z) - Multi-Dimensional Refinement Graph Convolutional Network with Robust
Decouple Loss for Fine-Grained Skeleton-Based Action Recognition [19.031036881780107]
We propose a flexible attention block called Channel-Variable Spatial-Temporal Attention (CVSTA) to enhance the discriminative power of spatial-temporal joints.
Based on CVSTA, we construct a Multi-Dimensional Refinement Graph Convolutional Network (MDR-GCN), which can improve the discrimination among channel-, joint- and frame-level features.
Furthermore, we propose a Robust Decouple Loss (RDL), which significantly boosts the effect of the CVSTA and reduces the impact of noise.
arXiv Detail & Related papers (2023-06-27T09:23:36Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.