論文の概要: Building Knowledge-Guided Lexica to Model Cultural Variation
- arxiv url: http://arxiv.org/abs/2406.11622v1
- Date: Mon, 17 Jun 2024 15:05:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 14:12:50.378975
- Title: Building Knowledge-Guided Lexica to Model Cultural Variation
- Title(参考訳): 文化変化をモデル化する知識誘導レキシカの構築
- Authors: Shreya Havaldar, Salvatore Giorgi, Sunny Rai, Thomas Talhelm, Sharath Chandra Guntuku, Lyle Ungar,
- Abstract要約: 地域文化の変化を測定することは、人々がどう考え、どのように振る舞うかを照らすことができる。
NLPコミュニティに新たな研究課題を導入する: 言語を用いた地域ごとの文化的構成の変化をどう測定するか?
私たちは、文化的変動をモデル化するための知識誘導レキシカを構築するという、スケーラブルなソリューションを提供しています。
- 参考スコア(独自算出の注目度): 9.860979195292375
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cultural variation exists between nations (e.g., the United States vs. China), but also within regions (e.g., California vs. Texas, Los Angeles vs. San Francisco). Measuring this regional cultural variation can illuminate how and why people think and behave differently. Historically, it has been difficult to computationally model cultural variation due to a lack of training data and scalability constraints. In this work, we introduce a new research problem for the NLP community: How do we measure variation in cultural constructs across regions using language? We then provide a scalable solution: building knowledge-guided lexica to model cultural variation, encouraging future work at the intersection of NLP and cultural understanding. We also highlight modern LLMs' failure to measure cultural variation or generate culturally varied language.
- Abstract(参考訳): 文化の変化は、国(例えば、米国対中国)と地域(例えば、カリフォルニア対テキサス、ロサンゼルス対サンフランシスコ)の間にも存在している。
この地域文化の変化を測定することは、人々がどう考え、どのように振る舞うかを照らすことができる。
歴史的に、トレーニングデータやスケーラビリティの制約が欠如しているため、文化的変動を計算的にモデル化することは困難である。
本研究では,NLPコミュニティにおける新たな研究課題について紹介する。言語を用いた地域ごとの文化的構成の変化をどう測定するか。
知識誘導レキシカを構築し、文化的変動をモデル化し、NLPと文化的理解の交差点での今後の作業を促進する。
また、現代LLMが文化的変動を測定したり、文化的に多様な言語を生成するのに失敗したことも強調する。
関連論文リスト
- Translating Across Cultures: LLMs for Intralingual Cultural Adaptation [12.5954253354303]
文化適応の課題を定義し,この課題に対する様々なモデルをベンチマークする評価フレームワークを作成する。
文化的バイアスやステレオタイプを含む自動適応の可能性について分析する。
論文 参考訳(メタデータ) (2024-06-20T17:06:58Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - CultureBank: An Online Community-Driven Knowledge Base Towards Culturally Aware Language Technologies [53.2331634010413]
CultureBankは、ユーザの自己物語に基づいて構築された知識ベースである。
TikTokから12K、Redditから1Kの文化的記述が含まれている。
今後の文化的に意識された言語技術に対する推奨事項を提示する。
論文 参考訳(メタデータ) (2024-04-23T17:16:08Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [68.37589899302161]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - Does Mapo Tofu Contain Coffee? Probing LLMs for Food-related Cultural Knowledge [21.87066736535593]
FmLAMA(FmLAMA)は、食品関連の文化的事実と食実践のバリエーションに着目した多言語データセットである。
我々は,LLMを様々なアーキテクチャや構成にわたって分析し,その性能を単言語と多言語の両方で評価する。
論文 参考訳(メタデータ) (2024-04-10T08:49:27Z) - Investigating Cultural Alignment of Large Language Models [10.738300803676655]
LLM(Large Language Models)は,異なる文化で採用されている多様な知識を真にカプセル化していることを示す。
社会学的調査をシミュレートし、実際の調査参加者のモデル応答を参考として、文化的アライメントの定量化を行う。
本稿では,人類学的推論を活用し,文化的アライメントを高める新しい手法である人類学的プロンプティングを紹介する。
論文 参考訳(メタデータ) (2024-02-20T18:47:28Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。