論文の概要: Joint Linked Component Analysis for Multiview Data
- arxiv url: http://arxiv.org/abs/2406.11761v1
- Date: Mon, 17 Jun 2024 17:25:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 12:54:18.297406
- Title: Joint Linked Component Analysis for Multiview Data
- Title(参考訳): マルチビューデータのための結合成分分析
- Authors: Lin Xiao, Luo Xiao,
- Abstract要約: データビュー毎に関節構造と個々の構造が存在する行列分解モデルを定式化する。
次に、新たなペナルティ項を持つ目的関数を提案し、同時推定とランク選択を実現する。
- 参考スコア(独自算出の注目度): 6.588932144201398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose the joint linked component analysis (joint\_LCA) for multiview data. Unlike classic methods which extract the shared components in a sequential manner, the objective of joint\_LCA is to identify the view-specific loading matrices and the rank of the common latent subspace simultaneously. We formulate a matrix decomposition model where a joint structure and an individual structure are present in each data view, which enables us to arrive at a clean svd representation for the cross covariance between any pair of data views. An objective function with a novel penalty term is then proposed to achieve simultaneous estimation and rank selection. In addition, a refitting procedure is employed as a remedy to reduce the shrinkage bias caused by the penalization.
- Abstract(参考訳): 本研究では,マルチビューデータに対する結合結合成分分析(joint\_LCA)を提案する。
共有コンポーネントを逐次的に抽出する古典的手法とは異なり、 joint\_LCA の目的は、ビュー固有のロード行列と共通の潜在部分空間のランクを同時に識別することである。
各データビューに関節構造と個々の構造が存在する行列分解モデルを定式化し、任意のデータビュー間の交差共分散に対してクリーンなsvd表現に到達できるようにする。
次に、新たなペナルティ項を持つ目的関数を提案し、同時推定とランク選択を実現する。
また、罰則によって引き起こされる収縮バイアスを低減するために、補充手順が用いられる。
関連論文リスト
- Multi-view Subspace Clustering via An Adaptive Consensus Graph Filter [4.3507834596906125]
近年,マルチビューサブスペースクラスタリング (MVSC) が注目されている。
本稿では、コンセンサス再構成係数行列の存在を仮定し、コンセンサスグラフフィルタを構築する。
各ビューでは、データをスムーズ化し、再構成係数行列の正規化器を設計する。
論文 参考訳(メタデータ) (2024-01-30T02:03:18Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
我々は、Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)という新しいマルチビュークラスタリングモデルを提案する。
提案手法の主な目的は,2つの異なる空間における協調学習を活用することにより,クラスタリング性能を向上させることである。
我々のアルゴリズムは近似線形計算複雑性を持ち、大規模データセットへの適用が成功することを保証している。
論文 参考訳(メタデータ) (2024-01-28T16:30:13Z) - Joint Multi-View Collaborative Clustering [0.0]
マルチビューデータは、従来のシングルビューデータよりもリッチな情報を提供する。
マルチビュークラスタリングアルゴリズムの目標は、複数のビューで共有される共通の潜在構造を見つけることである。
本稿では,JMVCC(Joint Multi-View Collaborative Clustering)ソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-25T08:23:45Z) - Learnable Pillar-based Re-ranking for Image-Text Retrieval [119.9979224297237]
画像テキスト検索は、モダリティギャップを埋め、意味的類似性に基づいてモダリティコンテンツを検索することを目的としている。
一般的なポストプロセッシング手法であるリグレードは, 単一モダリティ検索タスクにおいて, 隣り合う関係を捕捉する優位性を明らかにしている。
本稿では,画像テキスト検索のための新しい学習可能な柱型リグレードパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-25T04:33:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Personalized PCA: Decoupling Shared and Unique Features [4.976703689624386]
異種データセットから共有特徴とユニークな特徴を分離するパーソナライズされたPCA(PerPCA)を提案する。
穏やかな条件下では、一意的特徴と共有的特徴の両方を制約付き最適化問題によって識別し、復元できることが示される。
異種データセットから共有とユニークな機能を分離するための体系的なアプローチとして、PerPCAは、ビデオセグメンテーション、トピック抽出、フィーチャークラスタリングなど、いくつかのタスクにおけるアプリケーションを見つける。
論文 参考訳(メタデータ) (2022-07-17T00:09:47Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
部分的マルチビュークラスタリングの問題を解決するために,拡張自由グラフコントラスト学習フレームワークを提案する。
提案手法は、インスタンスレベルのコントラスト学習と欠落データ推論をクラスタレベルに高め、個々の欠落データがクラスタリングに与える影響を効果的に軽減する。
論文 参考訳(メタデータ) (2022-03-01T02:32:25Z) - Shared Independent Component Analysis for Multi-Subject Neuroimaging [107.29179765643042]
本稿では,ShICA (Shared Independent Component Analysis) を導入し,各ビューを加法ガウス雑音によって汚染された共有独立成分の線形変換としてモデル化する。
このモデルは、成分がガウス的でないか、あるいはノイズ分散に十分な多様性がある場合、同定可能であることを示す。
我々は,fMRIおよびMEGデータセットの実証的証拠として,ShICAが代替品よりも正確な成分推定を行うことを示す。
論文 参考訳(メタデータ) (2021-10-26T08:54:41Z) - Learning Multimodal VAEs through Mutual Supervision [72.77685889312889]
MEMEは、相互監督を通じて暗黙的にモダリティ間の情報を結合する。
我々は、MEMEが、部分的および完全観察スキームの双方で標準メトリクスのベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2021-06-23T17:54:35Z) - Double-matched matrix decomposition for multi-view data [0.6091702876917281]
一致したサンプルから異なるソースから収集されたデータである多視点データから,関節信号と個別信号の抽出の問題を考える。
提案する二重整合行列分解は, 被験者間の結合信号と個別信号の同時抽出を可能にする。
本手法をイングランド・プレミアリーグのサッカーの試合のデータに適用し、ドメイン固有の知識に合わせた共同および個別のマルチビュー信号を見つける。
論文 参考訳(メタデータ) (2021-05-07T17:09:57Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。