論文の概要: A Brief Survey on Leveraging Large Scale Vision Models for Enhanced Robot Grasping
- arxiv url: http://arxiv.org/abs/2406.11786v1
- Date: Mon, 17 Jun 2024 17:39:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 12:54:18.294887
- Title: A Brief Survey on Leveraging Large Scale Vision Models for Enhanced Robot Grasping
- Title(参考訳): 拡張型ロボットグラスピングにおける大規模視覚モデルの活用に関する簡単な調査
- Authors: Abhi Kamboj, Katherine Driggs-Campbell,
- Abstract要約: ロボットの把握は現実のシナリオにおいて困難な運動課題を示す。
コンピュータビジョンの最近の進歩は、教師なしのトレーニングメカニズムの成功を目撃している。
ロボットの把持性能向上における大規模視覚前訓練の有用性について検討した。
- 参考スコア(独自算出の注目度): 4.7079226008262145
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Robotic grasping presents a difficult motor task in real-world scenarios, constituting a major hurdle to the deployment of capable robots across various industries. Notably, the scarcity of data makes grasping particularly challenging for learned models. Recent advancements in computer vision have witnessed a growth of successful unsupervised training mechanisms predicated on massive amounts of data sourced from the Internet, and now nearly all prominent models leverage pretrained backbone networks. Against this backdrop, we begin to investigate the potential benefits of large-scale visual pretraining in enhancing robot grasping performance. This preliminary literature review sheds light on critical challenges and delineates prospective directions for future research in visual pretraining for robotic manipulation.
- Abstract(参考訳): ロボットの把握は現実のシナリオにおいて困難な運動課題を示し、様々な産業に有能なロボットを配置する上で大きなハードルとなっている。
特に、データの不足により、学習したモデルでは把握が特に困難になる。
コンピュータビジョンの最近の進歩は、インターネットから大量のデータを導出する非教師なしのトレーニングメカニズムが成長しているのを目撃し、今では、ほとんどすべての著名なモデルは、事前訓練されたバックボーンネットワークを活用している。
この背景から,ロボットの把持性能向上における大規模視覚前訓練のメリットについて検討する。
この予備的な文献レビューでは、重要な課題に光を当て、ロボット操作のための視覚前訓練の今後の研究の方向性を明記している。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - SKT: Integrating State-Aware Keypoint Trajectories with Vision-Language Models for Robotic Garment Manipulation [82.61572106180705]
本稿では、視覚言語モデル(VLM)を用いて、様々な衣服カテゴリーにおけるキーポイント予測を改善する統一的なアプローチを提案する。
我々は、高度なシミュレーション技術を用いて大規模な合成データセットを作成し、大規模な実世界のデータを必要としないスケーラブルなトレーニングを可能にした。
実験結果から, VLM法はキーポイント検出精度とタスク成功率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-09-26T17:26:16Z) - Semantically Controllable Augmentations for Generalizable Robot Learning [40.89398799604755]
ロボット操作の現実に見えないシナリオへの一般化には、トレーニング中にさまざまなデータセットを公開する必要がある。
本稿では,意味制御可能な拡張とロボットデータセットの高速乗算のための生成的拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-02T05:25:34Z) - Towards Generalist Robot Learning from Internet Video: A Survey [56.621902345314645]
本稿では,LfV(Learning from Videos)の新たな分野について概説する。
LfVは、従来のロボットデータを大規模なインターネットビデオデータで強化することで、ロボットデータのボトルネックに対処することを目指している。
本稿では、大規模インターネットビデオから知識を抽出し、LfVにおける重要な課題に対処し、映像データを用いて下流ロボットと強化学習を促進するための現在の手法についてレビューする。
論文 参考訳(メタデータ) (2024-04-30T15:57:41Z) - AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents [109.3804962220498]
AutoRTは、人間の監督を最小限に抑えて、完全に見えないシナリオで運用ロボットの展開をスケールアップするシステムである。
われわれはAutoRTが複数の建物にまたがる20以上のロボットに指示を提示し、遠隔操作と自律ロボットポリシーを通じて77万個の実ロボットエピソードを収集するデモを行った。
実験により,AutoRTが収集した「未使用データ」は極めて多種多様であり,AutoRTのLLMを使用することで,人間の好みに合わせることができるデータ収集ロボットの指示が可能であることを実証した。
論文 参考訳(メタデータ) (2024-01-23T18:45:54Z) - Exploring Visual Pre-training for Robot Manipulation: Datasets, Models
and Methods [14.780597545674157]
本稿では,3つの基本的視点から,視覚的事前学習がロボット操作作業に及ぼす影響について検討する。
自己教師型学習と教師型学習を組み合わせた視覚的事前学習方式Vi-PRoMを提案する。
論文 参考訳(メタデータ) (2023-08-07T14:24:52Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
ロボット学習の最近の進歩は、ロボットが操作タスクを実行できることを約束している。
この進歩に寄与する要因の1つは、モデルのトレーニングに使用されるロボットデータのスケールである。
本稿では,コンピュータビジョンや自然言語処理に広く用いられているテキスト・ツー・イメージ基盤モデルを利用した代替手法を提案する。
論文 参考訳(メタデータ) (2023-02-22T18:47:51Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。