Faces of Experimental Pain: Transferability of Deep Learned Heat Pain Features to Electrical Pain
- URL: http://arxiv.org/abs/2406.11808v1
- Date: Mon, 17 Jun 2024 17:51:54 GMT
- Title: Faces of Experimental Pain: Transferability of Deep Learned Heat Pain Features to Electrical Pain
- Authors: Pooja Prajod, Dominik Schiller, Daksitha Withanage Don, Elisabeth André,
- Abstract summary: In this study, we investigate whether deep learned feature representation for one type of experimentally induced pain can be transferred to another.
Challenge dataset contains data collected from 65 participants undergoing varying intensities of electrical pain.
In our proposed approach, we leverage an existing heat pain convolutional neural network (CNN) - trained on BioVid dataset - as a feature extractor.
- Score: 7.205834345343974
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The limited size of pain datasets are a challenge in developing robust deep learning models for pain recognition. Transfer learning approaches are often employed in these scenarios. In this study, we investigate whether deep learned feature representation for one type of experimentally induced pain can be transferred to another. Participating in the AI4Pain challenge, our goal is to classify three levels of pain (No-Pain, Low-Pain, High-Pain). The challenge dataset contains data collected from 65 participants undergoing varying intensities of electrical pain. We utilize the video recording from the dataset to investigate the transferability of deep learned heat pain model to electrical pain. In our proposed approach, we leverage an existing heat pain convolutional neural network (CNN) - trained on BioVid dataset - as a feature extractor. The images from the challenge dataset are inputted to the pre-trained heat pain CNN to obtain feature vectors. These feature vectors are used to train two machine learning models: a simple feed-forward neural network and a long short-term memory (LSTM) network. Our approach was tested using the dataset's predefined training, validation, and testing splits. Our models outperformed the baseline of the challenge on both the validation and tests sets, highlighting the potential of models trained on other pain datasets for reliable feature extraction.
Related papers
- Neural decoding from stereotactic EEG: accounting for electrode variability across subjects [21.28778005847666]
We introduce seegnificant: a training framework that can be used to decode behavior across subjects using sEEG data.
We construct a multi-subject model trained on the combined data from 21 subjects performing a behavioral task.
arXiv Detail & Related papers (2024-11-01T17:58:01Z) - Pain Analysis using Adaptive Hierarchical Spatiotemporal Dynamic Imaging [16.146223377936035]
We introduce the Adaptive temporal Dynamic Image (AHDI) technique.
AHDI encodes deep changes in facial videos into singular RGB image, permitting application simpler 2D models for video representation.
Within this framework, we employ a residual network to derive generalized facial representations.
These representations are optimized for two tasks: estimating pain intensity and differentiating between genuine and simulated pain expressions.
arXiv Detail & Related papers (2023-12-12T01:23:05Z) - Transformer Encoder with Multiscale Deep Learning for Pain
Classification Using Physiological Signals [0.0]
Pain is a subjective sensation-driven experience.
Traditional techniques for measuring pain intensity are susceptible to bias and unreliable in some instances.
We develop PainAttnNet, a novel transfomer-encoder deep-learning framework for classifying pain intensities with physiological signals as input.
arXiv Detail & Related papers (2023-03-13T04:21:33Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
We reconstruct the training samples from a single gradient query at a randomly chosen parameter value.
As a provable attack that reveals sensitive training data, our findings suggest potential severe threats to privacy.
arXiv Detail & Related papers (2022-12-07T15:32:22Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data
Distillation and Augmentation [6.78974856327994]
The application of Deep Learning for medical diagnosis is often hampered by two problems.
First, the amount of training data may be scarce, as it is limited by the number of patients who have acquired the condition to be diagnosed.
Second, the training data may be corrupted by various types of noise.
arXiv Detail & Related papers (2020-06-17T15:52:28Z) - Pain Intensity Estimation from Mobile Video Using 2D and 3D Facial
Keypoints [1.6402428190800593]
Managing post-surgical pain is critical for successful surgical outcomes.
One of the challenges of pain management is accurately assessing the pain level of patients.
We introduce an approach that analyzes 2D and 3D facial keypoints of post-surgical patients to estimate their pain intensity level.
arXiv Detail & Related papers (2020-06-17T00:18:29Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Neural Networks Are More Productive Teachers Than Human Raters: Active
Mixup for Data-Efficient Knowledge Distillation from a Blackbox Model [57.41841346459995]
We study how to train a student deep neural network for visual recognition by distilling knowledge from a blackbox teacher model in a data-efficient manner.
We propose an approach that blends mixup and active learning.
arXiv Detail & Related papers (2020-03-31T05:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.