Neural decoding from stereotactic EEG: accounting for electrode variability across subjects
- URL: http://arxiv.org/abs/2411.10458v1
- Date: Fri, 01 Nov 2024 17:58:01 GMT
- Title: Neural decoding from stereotactic EEG: accounting for electrode variability across subjects
- Authors: Georgios Mentzelopoulos, Evangelos Chatzipantazis, Ashwin G. Ramayya, Michelle J. Hedlund, Vivek P. Buch, Kostas Daniilidis, Konrad P. Kording, Flavia Vitale,
- Abstract summary: We introduce seegnificant: a training framework that can be used to decode behavior across subjects using sEEG data.
We construct a multi-subject model trained on the combined data from 21 subjects performing a behavioral task.
- Score: 21.28778005847666
- License:
- Abstract: Deep learning based neural decoding from stereotactic electroencephalography (sEEG) would likely benefit from scaling up both dataset and model size. To achieve this, combining data across multiple subjects is crucial. However, in sEEG cohorts, each subject has a variable number of electrodes placed at distinct locations in their brain, solely based on clinical needs. Such heterogeneity in electrode number/placement poses a significant challenge for data integration, since there is no clear correspondence of the neural activity recorded at distinct sites between individuals. Here we introduce seegnificant: a training framework and architecture that can be used to decode behavior across subjects using sEEG data. We tokenize the neural activity within electrodes using convolutions and extract long-term temporal dependencies between tokens using self-attention in the time dimension. The 3D location of each electrode is then mixed with the tokens, followed by another self-attention in the electrode dimension to extract effective spatiotemporal neural representations. Subject-specific heads are then used for downstream decoding tasks. Using this approach, we construct a multi-subject model trained on the combined data from 21 subjects performing a behavioral task. We demonstrate that our model is able to decode the trial-wise response time of the subjects during the behavioral task solely from neural data. We also show that the neural representations learned by pretraining our model across individuals can be transferred in a few-shot manner to new subjects. This work introduces a scalable approach towards sEEG data integration for multi-subject model training, paving the way for cross-subject generalization for sEEG decoding.
Related papers
- Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI [6.926908480247951]
We propose a unified foundation model for EEG called Large Brain Model (LaBraM)
LaBraM enables cross-dataset learning by segmenting the EEG signals into EEG channel patches.
We then pre-train neural Transformers by predicting the original neural codes for the masked EEG channel patches.
arXiv Detail & Related papers (2024-05-29T05:08:16Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Deep Learning for real-time neural decoding of grasp [0.0]
We present a Deep Learning-based approach to the decoding of neural signals for grasp type classification.
The main goal of the presented approach is to improve over state-of-the-art decoding accuracy without relying on any prior neuroscience knowledge.
arXiv Detail & Related papers (2023-11-02T08:26:29Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
We propose a method that integrates key ingredients from latent models and traditional neural encoding models.
Our method, pi-VAE, is inspired by recent progress on identifiable variational auto-encoder.
We validate pi-VAE using synthetic data, and apply it to analyze neurophysiological datasets from rat hippocampus and macaque motor cortex.
arXiv Detail & Related papers (2020-11-09T22:00:38Z) - Neural networks for classification of strokes in electrical impedance
tomography on a 3D head model [0.0]
We employ two neural network architectures -- a fully connected and a convolutional one -- for the classification of hemorrhagic and ischemic strokes.
The networks are trained on a dataset with $40,000$ samples of synthetic electrode measurements.
We then test the networks on several datasets of unseen EIT data, with more complex stroke modeling.
arXiv Detail & Related papers (2020-11-05T14:22:05Z) - An Explainable Model for EEG Seizure Detection based on Connectivity
Features [0.0]
We propose to learn a deep neural network that detects whether a particular data window belongs to a seizure or not.
Taking our data as a sequence of ten sub-windows, we aim at designing an optimal deep learning model using attention, CNN, BiLstm, and fully connected layers.
Our best model architecture resulted in 97.03% accuracy using balanced MITBIH data subset.
arXiv Detail & Related papers (2020-09-26T11:07:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.