RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content
- URL: http://arxiv.org/abs/2406.11811v2
- Date: Tue, 05 Nov 2024 16:47:43 GMT
- Title: RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content
- Authors: Joao Monteiro, Pierre-Andre Noel, Etienne Marcotte, Sai Rajeswar, Valentina Zantedeschi, David Vazquez, Nicolas Chapados, Christopher Pal, Perouz Taslakian,
- Abstract summary: Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet.
evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions.
We introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks.
- Score: 13.187520657952263
- License:
- Abstract: Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includes encyclopedic documents that harbor a vast amount of general knowledge (e.g., Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (e.g., a news article) absent from the internet; (2) a question about the document's topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: https://huggingface.co/datasets/ServiceNow/repliqa.
Related papers
- Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
We model the subgraph retrieval task as a conditional generation task handled by small language models.
Our base generative subgraph retrieval model, consisting of only 220M parameters, competitive retrieval performance compared to state-of-the-art models.
Our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks.
arXiv Detail & Related papers (2024-10-08T15:22:36Z) - DOCBENCH: A Benchmark for Evaluating LLM-based Document Reading Systems [99.17123445211115]
We introduce DocBench, a benchmark to evaluate large language model (LLM)-based document reading systems.
Our benchmark involves the recruitment of human annotators and the generation of synthetic questions.
It includes 229 real documents and 1,102 questions, spanning across five different domains and four major types of questions.
arXiv Detail & Related papers (2024-07-15T13:17:42Z) - Attribute or Abstain: Large Language Models as Long Document Assistants [58.32043134560244]
LLMs can help humans working with long documents, but are known to hallucinate.
Existing approaches to attribution have only been evaluated in RAG settings, where the initial retrieval confounds LLM performance.
This is crucially different from the long document setting, where retrieval is not needed, but could help.
We present LAB, a benchmark of 6 diverse long document tasks with attribution, and experiments with different approaches to attribution on 5 LLMs of different sizes.
arXiv Detail & Related papers (2024-07-10T16:16:02Z) - NewsQs: Multi-Source Question Generation for the Inquiring Mind [59.79288644158271]
We present NewsQs, a dataset that provides question-answer pairs for multiple news documents.
To create NewsQs, we augment a traditional multi-document summarization dataset with questions automatically generated by a T5-Large model fine-tuned on FAQ-style news articles.
arXiv Detail & Related papers (2024-02-28T16:59:35Z) - UFO: a Unified and Flexible Framework for Evaluating Factuality of Large
Language Models [73.73303148524398]
Large language models (LLMs) may generate text that lacks consistency with human knowledge, leading to factual inaccuracies or textithallucination.
We propose textttUFO, an LLM-based unified and flexible evaluation framework to verify facts against plug-and-play fact sources.
arXiv Detail & Related papers (2024-02-22T16:45:32Z) - FanOutQA: A Multi-Hop, Multi-Document Question Answering Benchmark for Large Language Models [37.34801677290571]
FanOutQA is a high-quality dataset of fan-out question-answer pairs and human-annotated decompositions with English Wikipedia.
We formulate three benchmark settings across our dataset and benchmark 7 LLMs, including GPT-4, LLaMA 2, Claude-2.1, and Mixtral-8x7B.
arXiv Detail & Related papers (2024-02-21T20:30:45Z) - Element-aware Summarization with Large Language Models: Expert-aligned
Evaluation and Chain-of-Thought Method [35.181659789684545]
Automatic summarization generates concise summaries that contain key ideas of source documents.
References from CNN/DailyMail and BBC XSum are noisy, mainly in terms of factual hallucination and information redundancy.
We propose a Summary Chain-of-Thought (SumCoT) technique to elicit LLMs to generate summaries step by step.
Experimental results show our method outperforms state-of-the-art fine-tuned PLMs and zero-shot LLMs by +4.33/+4.77 in ROUGE-L.
arXiv Detail & Related papers (2023-05-22T18:54:35Z) - LMGQS: A Large-scale Dataset for Query-focused Summarization [77.6179359525065]
We convert four generic summarization benchmarks into a new QFS benchmark dataset, LMGQS.
We establish baselines with state-of-the-art summarization models.
We achieve state-of-the-art zero-shot and supervised performance on multiple existing QFS benchmarks.
arXiv Detail & Related papers (2023-05-22T14:53:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.