Decoding the Digital Fine Print: Navigating the potholes in Terms of service/ use of GenAI tools against the emerging need for Transparent and Trustworthy Tech Futures
- URL: http://arxiv.org/abs/2406.11845v2
- Date: Wed, 19 Jun 2024 13:26:47 GMT
- Title: Decoding the Digital Fine Print: Navigating the potholes in Terms of service/ use of GenAI tools against the emerging need for Transparent and Trustworthy Tech Futures
- Authors: Sundaraparipurnan Narayanan,
- Abstract summary: The research investigates the crucial role of clear and intelligible terms of service in cultivating user trust and facilitating informed decision-making in the context of AI, in specific GenAI.
It highlights the obstacles presented by complex legal terminology and detailed fine print, which impede genuine user consent and recourse.
Findings indicate inconsistencies and variability in document quality, signaling a pressing demand for uniformity in disclosure practices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The research investigates the crucial role of clear and intelligible terms of service in cultivating user trust and facilitating informed decision-making in the context of AI, in specific GenAI. It highlights the obstacles presented by complex legal terminology and detailed fine print, which impede genuine user consent and recourse, particularly during instances of algorithmic malfunctions, hazards, damages, or inequities, while stressing the necessity of employing machine-readable terms for effective service licensing. The increasing reliance on General Artificial Intelligence (GenAI) tools necessitates transparent, comprehensible, and standardized terms of use, which facilitate informed decision-making while fostering trust among stakeholders. Despite recent efforts promoting transparency via system and model cards, existing documentation frequently falls short of providing adequate disclosures, leaving users ill-equipped to evaluate potential risks and harms. To address this gap, this research examines key considerations necessary in terms of use or terms of service for Generative AI tools, drawing insights from multiple studies. Subsequently, this research evaluates whether the terms of use or terms of service of prominent Generative AI tools against the identified considerations. Findings indicate inconsistencies and variability in document quality, signaling a pressing demand for uniformity in disclosure practices. Consequently, this study advocates for robust, enforceable standards ensuring complete and intelligible disclosures prior to the release of GenAI tools, thereby empowering end-users to make well-informed choices and enhancing overall accountability in the field.
Related papers
- Bridging the Communication Gap: Evaluating AI Labeling Practices for Trustworthy AI Development [41.64451715899638]
High-level AI labels, inspired by frameworks like EU energy labels, have been proposed to make the properties of AI models more transparent.
This study evaluates AI labeling through qualitative interviews along four key research questions.
arXiv Detail & Related papers (2025-01-21T06:00:14Z) - Development and Adoption of SATD Detection Tools: A State-of-practice Report [5.670597842524448]
Self-Admitted Technical Debt (SATD) refers to instances where developers knowingly introduce suboptimal solutions into code.
This paper provides a comprehensive state-of-practice report on the development and adoption of SATD detection tools.
arXiv Detail & Related papers (2024-12-18T12:06:53Z) - The Artificial Intelligence Disclosure (AID) Framework: An Introduction [0.0]
This article introduces The Artificial Intelligence Disclosure (AID) Framework, a standard, comprehensive, and detailed framework meant to inform the development and writing of GenAI disclosure for education and research.
arXiv Detail & Related papers (2024-08-04T02:18:42Z) - Open Problems in Technical AI Governance [93.89102632003996]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.
This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Exploring the Relevance of Data Privacy-Enhancing Technologies for AI
Governance Use Cases [1.5293427903448022]
It is useful to view different AI governance objectives as a system of information flows.
The importance of interoperability between these different AI governance solutions becomes clear.
arXiv Detail & Related papers (2023-03-15T21:56:59Z) - Users are the North Star for AI Transparency [111.5679109784322]
Despite widespread calls for transparent artificial intelligence systems, the term is too overburdened with disparate meanings to express precise policy aims or to orient concrete lines of research.
Part of why this happens is that a clear ideal of AI transparency goes unsaid in this body of work.
We explicitly name such a north star -- transparency that is user-centered, user-appropriate, and honest.
arXiv Detail & Related papers (2023-03-09T18:53:29Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Multisource AI Scorecard Table for System Evaluation [3.74397577716445]
The paper describes a Multisource AI Scorecard Table (MAST) that provides the developer and user of an artificial intelligence (AI)/machine learning (ML) system with a standard checklist.
The paper explores how the analytic tradecraft standards outlined in Intelligence Community Directive (ICD) 203 can provide a framework for assessing the performance of an AI system.
arXiv Detail & Related papers (2021-02-08T03:37:40Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.