AI-Augmented Ethical Hacking: A Practical Examination of Manual Exploitation and Privilege Escalation in Linux Environments
- URL: http://arxiv.org/abs/2411.17539v1
- Date: Tue, 26 Nov 2024 15:55:15 GMT
- Title: AI-Augmented Ethical Hacking: A Practical Examination of Manual Exploitation and Privilege Escalation in Linux Environments
- Authors: Haitham S. Al-Sinani, Chris J. Mitchell,
- Abstract summary: This study explores the application of generative AI (GenAI) within manual exploitation and privilege escalation tasks in Linux-based penetration testing environments.
Our findings demonstrate that GenAI can streamline processes, such as identifying potential attack vectors and parsing complex outputs for sensitive data during privilege escalation.
- Score: 2.3020018305241337
- License:
- Abstract: This study explores the application of generative AI (GenAI) within manual exploitation and privilege escalation tasks in Linux-based penetration testing environments, two areas critical to comprehensive cybersecurity assessments. Building on previous research into the role of GenAI in the ethical hacking lifecycle, this paper presents a hands-on experimental analysis conducted in a controlled virtual setup to evaluate the utility of GenAI in supporting these crucial, often manual, tasks. Our findings demonstrate that GenAI can streamline processes, such as identifying potential attack vectors and parsing complex outputs for sensitive data during privilege escalation. The study also identifies key benefits and challenges associated with GenAI, including enhanced efficiency and scalability, alongside ethical concerns related to data privacy, unintended discovery of vulnerabilities, and potential for misuse. This work contributes to the growing field of AI-assisted cybersecurity by emphasising the importance of human-AI collaboration, especially in contexts requiring careful decision-making, rather than the complete replacement of human input.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - PenTest++: Elevating Ethical Hacking with AI and Automation [2.3020018305241337]
PenTest++ is an AI-augmented system that integrates automation with generative AI (GenAI) to optimise ethical hacking.
It balances automation with human oversight, ensuring informed decision-making at key stages.
arXiv Detail & Related papers (2025-02-13T16:46:23Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.
In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Research Integrity and GenAI: A Systematic Analysis of Ethical Challenges Across Research Phases [0.0]
The rapid development and use of generative AI (GenAI) tools in academia presents complex and multifaceted ethical challenges for its users.
This study aims to examine the ethical concerns arising from the use of GenAI across different phases of research.
arXiv Detail & Related papers (2024-12-13T13:31:45Z) - AI-Enhanced Ethical Hacking: A Linux-Focused Experiment [2.3020018305241337]
The study evaluates GenAI's effectiveness across the key stages of penetration testing on Linux-based target machines.
The report critically examines potential risks such as misuse, data biases, hallucination, and over-reliance on AI.
arXiv Detail & Related papers (2024-10-07T15:02:47Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
This paper explores the integration of Artificial Intelligence (AI) into offensive cybersecurity.
It develops an autonomous AI agent, ReaperAI, designed to simulate and execute cyberattacks.
ReaperAI demonstrates the potential to identify, exploit, and analyze security vulnerabilities autonomously.
arXiv Detail & Related papers (2024-05-09T18:15:12Z) - How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
The emerging area of em Explainable Interfaces (EIs) focuses on the user interface and user experience design aspects of XAI.
This paper presents a systematic survey of 53 publications to identify current trends in human-XAI interaction and promising directions for EI design and development.
arXiv Detail & Related papers (2024-03-21T15:44:56Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.